摘要
A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period along with changes in several important agronomic traits. We found that the initiation of the lesions was induced by light and cel death occurred in lmm6 accompanied with accumulation of reactive oxygen species (ROS). The lower chlorophyl content, soluble protein content and superoxide dismutase (SOD) activity, the higher malondialdehyde (MDA) content were detected in lmm6 than in the wild type (WT). Moreover, the observation by transmission electronic microscope (TEM) demonstrated that some organel es were damaged and the stroma lamel a of chloroplast was irregular and loose in mesophyl cel of lmm6. In addition, lmm6 was more resistant than WT to rice blast fungus Magnaporthe grisea infection, which was consistent with increased expression of four genes involved in the defense-related reaction. Genetic analysis showed that mutant trait of lmm6 is inherited as a monogenic recessive nuclear gene located on the long arm of chromosome 6. Using simple sequence repeat (SSR) markers, the target gene was ifnal y delimited to an interval of 80.8 kb between markers MM2359 and MM2370, containing 7 annotated genes. Taken together, our results provide the information to identify a new gene involved in rice lesion mimic, which wil be helpful in clarifying the mechanism of cel death and disease resistance in rice.
A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period along with changes in several important agronomic traits. We found that the initiation of the lesions was induced by light and cel death occurred in lmm6 accompanied with accumulation of reactive oxygen species (ROS). The lower chlorophyl content, soluble protein content and superoxide dismutase (SOD) activity, the higher malondialdehyde (MDA) content were detected in lmm6 than in the wild type (WT). Moreover, the observation by transmission electronic microscope (TEM) demonstrated that some organel es were damaged and the stroma lamel a of chloroplast was irregular and loose in mesophyl cel of lmm6. In addition, lmm6 was more resistant than WT to rice blast fungus Magnaporthe grisea infection, which was consistent with increased expression of four genes involved in the defense-related reaction. Genetic analysis showed that mutant trait of lmm6 is inherited as a monogenic recessive nuclear gene located on the long arm of chromosome 6. Using simple sequence repeat (SSR) markers, the target gene was ifnal y delimited to an interval of 80.8 kb between markers MM2359 and MM2370, containing 7 annotated genes. Taken together, our results provide the information to identify a new gene involved in rice lesion mimic, which wil be helpful in clarifying the mechanism of cel death and disease resistance in rice.
基金
supported by the Major Special Foundation of Transgenic Plants in China (2013ZX001-003 and 2014ZX08009-15B)