期刊文献+

Increased grain yield with improved photosynthetic characters in modern maize parental lines 被引量:3

Increased grain yield with improved photosynthetic characters in modern maize parental lines
下载PDF
导出
摘要 The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars. The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation tech-nology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass signiifcantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyl , and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photo-chemistry efifciency (ФPSI ) and the maximum PSII photochemistry efifciency (Fv/Fm), which largely improved light partition-ing and chlorophyl lfuorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamel ae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which wil greatly help to improve photosynthetic capacity and energy efifciency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capac-ity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第9期1735-1744,共10页 农业科学学报(英文版)
基金 financial support from the National Natural Science Foundation of China (31401342) the National Basic Research Program of China (973 Program, 2015CB150401)
关键词 MAIZE modern parental lines grain yield photosynthetic traits chloroplast ultrastructure maize,modern parental lines,grain yield,photosynthetic traits,chloroplast ultrastructure
  • 相关文献

参考文献2

二级参考文献12

共引文献316

同被引文献29

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部