期刊文献+

Banach空间的p-弱近似性质

p-Weak Approximation Property in Banach Spaces
下载PDF
导出
摘要 给出了Banach空间的p-弱近似性质和p-有界弱近似性质的定义,获得了这些性质的一些刻画.利用这些刻画证明了如果一个Banach空间X的对偶空间X*有p-弱近似性质(或p-有界弱近似性质),则X有p-弱近似性质(或p-有界弱近似性质),在一般情况下反之不成立。 In this paper, the authours introduce the definitions of the p-weak approximation property and the p-bounded weak approximation property in Banach spaces, and derive some characterizations of these properties. They show that if the dual of a Banach space X has the p-weak approximation property (or the p-bounded weak approximation property), then X itself has the p-weak approximation property (or the p-bounded weak approximation property). The converse is not true in general.
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第3期247-256,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11371279) 山东省科技攻关项目(No.2014GGH201010)的资助
关键词 p-紧集 p-弱近似性质 p-有界弱近似性质 p-Compact set, p-Weak approximation property, p-Bounded weak approximation property
  • 相关文献

参考文献10

  • 1Grothendieck A. Produits tensoriel topologiques et espaces nucleaires [J]. Men Amer Math Soc, 1955, 16:193-200.
  • 2Casazza P G. Approximation property [M]. Johnson W B, Lindenstrauss J (eds), Hand- book of the Geometry of Banach space, Amsterdam: Elsevier, 2001.
  • 3Choi C, Kim J M. Weak and quasi-approximation properties in Banach spaces [J]. J Math Anal Appl, 2006, 316:722-735.
  • 4Kim J M. Dual problems for weak and quasi-approximation properties [J]. J Math Anal Appl, 2006, 321:569-575.
  • 5Sinha D P, Karn A K. Compact operator whose adjoints factor through subspace of lp [J]. Studia Math, 2002, 150:17-33.
  • 6Sinha D P, Karn A .K. Compact operator which factor through subspaces of lp [J]. Math Nachr, 2008, 281:412-423.
  • 7Choi C, Kim J M. The dual space of (L(X, Y), Tp) and the p-approximation property [J]. J Funct Anal, 2010, 259:2437-2454.
  • 8Megginson R E. An introduction to Banach theory [M]. New York: Springer-Verlag, 1998.
  • 9Willis G A. The compact approximation property does not imply the approximation property [J]. Studia Math, 1992, 103:99-108.
  • 10Lindenstrauss J. On James' paper separable conjugate spaces [J]. Isr J Math, 1971, 9:279-284.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部