摘要
给出了Banach空间的p-弱近似性质和p-有界弱近似性质的定义,获得了这些性质的一些刻画.利用这些刻画证明了如果一个Banach空间X的对偶空间X*有p-弱近似性质(或p-有界弱近似性质),则X有p-弱近似性质(或p-有界弱近似性质),在一般情况下反之不成立。
In this paper, the authours introduce the definitions of the p-weak approximation property and the p-bounded weak approximation property in Banach spaces, and derive some characterizations of these properties. They show that if the dual of a Banach space X has the p-weak approximation property (or the p-bounded weak approximation property), then X itself has the p-weak approximation property (or the p-bounded weak approximation property). The converse is not true in general.
出处
《数学年刊(A辑)》
CSCD
北大核心
2015年第3期247-256,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11371279)
山东省科技攻关项目(No.2014GGH201010)的资助
关键词
p-紧集
p-弱近似性质
p-有界弱近似性质
p-Compact set, p-Weak approximation property, p-Bounded weak approximation property