期刊文献+

基于稀疏K-SVD的单幅图像超分辨率重建算法 被引量:1

Single Image Super-Resolution Reconstruction Based on Sparse K-SVD
下载PDF
导出
摘要 图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,提出了一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨率字典对,以待重建的低分辨率图像及其降采样作为字典训练的样本,提高了字典和待重建的低分辨率图像的相关性;然后,采用逐级放大的思想进行重建;最后,利用非局部均值的方法,进一步提高重建效果。实验表明,与基于K-SVD的超分辨率重建算法相比,本文算法重建图像的峰值信噪比平均提高了0.6 d B左右。重建图像在视觉效果上,也有一定程度的提升。 Super-resolution reconstruction can enhance the image quality and improve the visual perception, which plays an important role in the real worht. For the problems in the image super-resolution method based on K-SVD, a new method based on sparse K-SVD is proposed and used for license plate images reconstruction. Firstly, the low-resolution (LR) license plate images and their downsampling versions are used as samples to train dictionary., which improves the relativity between the dictionary and the LR license plate image. And the sparse K-SVD method is used for dietioary training to obtain a pair of dictionaries. Then, a gradual magnification scheme is used for reconstnletion. Finally, the non-local means is exploited to further improve the reconstruction performance. Experimental results on license plate images show that the PSNR is improved by nearly 0. 6 dB compared to the image super-resolution method based on K-SVD, and this method also has a better visual improvement to certain extent.
出处 《电视技术》 北大核心 2015年第18期82-85,102,共5页 Video Engineering
基金 国家自然科学基金项目(61371155 61174170)
关键词 超分辨率 字典学习 稀疏K—SVD 非局部均值 super-resolution dictionary learning sparse K-SVD non-local means
  • 相关文献

参考文献10

  • 1SCHULTZ R R, STEVENSON R L. A Bayesian approach to image expansion for improved definition[ J ]. IEEE Trans. Image Process- ing, 1994,3 (3) :233-242.
  • 2IRANI M, PELEG S. Improving resolution by image registration [ J] CVGIP: Graphical Models and Image Processing, 1991,53 ( 3 ) :231-239.
  • 3LI X, ORCHARD M T. New edge-directed interpolation[ J]. IEEE Trans. Image Processing,2001 , 10(10) : 1521-1527.
  • 4LI M, NGUYEN T Q. Markov random field model-based edge-di- rected image interpolation [ J ]. IEEE Trans. Image Proeessing, 2008,17(7) :1121-1128.
  • 5MAIRAL J, BACH F, PONCE J, et al. Non-loc sparse models for image restoration[ C ]//Proc. 2009 IEEE 12th Intematiomd Conference on Computer Vision. IS. 1. :IEEE Press, 2009: 2272-2279.
  • 6YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[ J]. IEEE Trans. Image Prncessing,2010, 19( 11 ) :2861-2873.
  • 7ZEYDE R, EI.AD M, PROTTER M. Curves and surfaces [ M ]. Berlin Heidelberg:Springer, 2012:711-730.
  • 8RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Double sparsity:learning sparse dictionaries for sparse signal approximation [ J ]. IEEE Trans. Signal Processing,2010, 58(3 ) :1553-1564.
  • 9BUADES A, COLL B, MOREL J M. A non-local algorithm for im- age denoising [ C ]//Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [ S. 1. ] : IEEE Press, 2005:60-65.
  • 10WONG A, ORCHARD J. A nonlocal-means approach to exemplar- based inpainting[ C]//Proc. 15th IEEE International Conference on hnage Processing. [ S. 1. ] :IEEE Press,2008:2600-2603.

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部