期刊文献+

基于物联网的公路交通运行状态评估与预测 被引量:6

Estimate and Prediction of Traffic State on Expressway under Internet of Things
原文传递
导出
摘要 交通事故与交通运行异常状态在公路上经常发生,对上游路段和相邻国省道带来严重的影响。通常,针对此类情况提前制定具有针对性的预案难度很大。如何在复杂路网环境下快速监测异常交通运行状态的发生并预测交通事件的影响范围,成为公路应急处置管理的基础。提出基于物联网技术对交通运行状态信息、气象条件、路面状况以及结构物状态的广泛感知,用于实时、快速监测公路异常事件的发生并预测复杂路网环境下交通事件发生后未来短时的交通拥堵发展态势的预测方法。该方法充分考虑了交通流、气象、路面条件以及结构物状态对交通事件下公路通行状态的影响。基于该方法,开发了公路网交通运行状态预测系统,通过实际数据的测试,该预测方法具有良好的监测与预测能力。因此,本文提出的技术可以很好地为公路应急处置提供快速、科学的决策支持,为公路运营管理提供服务。 Traffic accidents and abnormal incidents happen frequently on expressways, which bring severe impact on upstream road sections and neighboring national highways, and generally it is hard to make pre-arranged planning. How to quickly monitor the abnormal traffic situations and predict the affected area become the basis of expressway emergency response and management. In this paper, the method combining Internet of Things and simulation model is proposed for on-line forecasting short-term propagation of incident on expressway. The method fully considers the impact of traffic flow, meteorology, road surface and structures conditions on traveling situations under accident events. Based on this method, highway network traffic operating situations forecasting system is developed. The experiment data shows that this method proposed in this paper has good monitoring and forecasting ability. Hence the method can provide rapid and scientific support for decision making for highway emergency and for highway operations and management.
出处 《公路》 北大核心 2015年第9期178-183,共6页 Highway
基金 交通运输部交通科技建设项目 项目编号2011318221230
关键词 智能交通 物联网 交通仿真 交通状态 交通事故 ntelligent transportation internet of things traffic simulation traffic state trafficincident
  • 相关文献

参考文献10

  • 1Michalopoulos P G,Pishaody V B. Deriation of delays based on improved macroscopic traffic models [J]. Transportation research part B, 1981,15 : 299- 317.
  • 2Morales M J. Analytical procedures for estimating freeway traffic congestion[J]. Public Road, 1986,50 (2) :55-61.
  • 3Newell G F. A simplified theory of kinematic waves in highway traffic, Part Ⅱ: Queueing at freeway bottle- necks[J]. Transportation research part B, 1993, 27 (4) :289-303.
  • 4Lawson T W,et al. Using the input-output diagram to determine the spatial and temporal extents of a queue upstream of a bottleneckFJ]. Transportation Research Record,1997,1572(1) : 140-147.
  • 5Sheu J B, Chou Y H. Stochastic modeling and real-time prediction of incident effects on surface street traffic congestion[J]. Applied Mathematical Model- ing, 2004,28 : 445- 468.
  • 6陈茜,李文权.Influence range of emergency under special events based on CTM[J].Journal of Southeast University(English Edition),2009,25(2):257-261. 被引量:6
  • 7Sun C, Chilukuri V. Dynamic Incident Progression Curve for Classifying Secondary Traffic Crashes[J]. Journal of Transportation Engineering, 2010,136 (12) : 1153-1158.
  • 8Lin Hou,Zuo Zhang,Binghao Lu,Runmin Xu,Yi Zhang.Estimation of Incident-Induced Congestion on Signalized Arteries Using Traffic Sensor Data[J].Tsinghua Science and Technology,2012,17(3):296-303. 被引量:2
  • 9Younshik C, Recker W. A Methodological Approach for Estimating Temporal and Spatial Extent of Delays Caused by Freeway Accidents[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 ( 3 ) : 1454-1461.
  • 10李长城,刘小明,荣建.路面湿滑指数开发及其在交通运行管理中的应用[J].公路交通科技,2010,27(11):132-136. 被引量:7

二级参考文献28

共引文献12

同被引文献49

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部