期刊文献+

基于FLOC-MUSIC算法的3D-DOA估计 被引量:1

3D-DOA estimation based on FLOC-MUSIC algorithm
下载PDF
导出
摘要 由于在尖峰非正态噪声背景下,MUSIC算法对信源的3D-DOA估计将失去韧性,为此对MUSIC算法进行了改进,提出了一种信源3D-DOA估计新算法。首先简要分析了圆阵模型以及共变,然后将阵列输出矩阵从二阶原点矩扩展到低阶矩,通过分析共变矩阵,得到基于共变矩阵的空间谱,再对空间谱作梯度运算后进行极值搜索,最后可得信源的3D-DOA估计。通过仿真,在尖峰非正态噪声下,算法可以对多个信源的3D-DOA进行正确估计。算法性能分析表明:在背景噪声有冲激且信噪比较低时,FLOC-MUSIC算法较经典MUSIC算法具有良好的韧性。 Under the spike of non-normal background noise,the MUSIC algorithm for 3D-DOA could lose its capability,therefore this paper improved the MUSIC algorithm,it proposed a new algorithm for 3D-DOA estimation. First it briefly analysed the circular array model and covariation,then extended the moments from two order to low order,through the analysis of covariant matrix,got a spatial spectrum based on covariant matrix,then calculated the gradient of spatial spectrum and searched the extreme,finally got the 3D-DOA estimation. Through the simulation the algorithm could correctly estimate multiple source under the spike of non-normal background noise. The analysis of the algorithm performance show that when the background noise contains impulse and low SNR the FLOC-MUSIC algorithm is better than the classical MUSIC algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期2970-2972,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61261046) 江西省教育厅科学技术研究项目(GJJ14739 GJJ14721) 九江学院科研项目(2013KJ02)
关键词 MUSIC算法 共变矩阵 3D-DOA FLOC-MUSIC算法 MUSIC algorithm covariant matrix 3D-DOA FLOC-MUSIC algorithm
  • 相关文献

参考文献12

  • 1Wang Wenyi,Wu Renbiao. High resolution direction of arrival(DOA) estimation based on improved orthogonal matching pursuit(OMP) algorithm by iterative local searching[ J]. Sensors,2013 ,13(9)=11167-11183.
  • 2Fujimoto M, Hori T. Sub-band processing for DOA estimation of UWBsignai[J]. IEICE Communications Express, 2012,1(1):23-27.
  • 3孙永梅,赵维,阚园园.脉冲噪声环境下的改进MUSIC谱估计方法[J].大连交通大学学报,2012,33(3):67-72. 被引量:2
  • 4Bandhopadhya T K, Manish S,Akash T. Jitter’ s alpha stable distribu-tion behavior[J]. International Journal of Computer Technologyand 曰ectronics Engineering,2013,3(1) : 13-16.
  • 5FENG Xun,WANG Shouyong,YANG Jun,ZHU Xiaobo.Radar Clutter Suppression Based on SαS Fractional Autoregressive Model[J].Chinese Journal of Electronics,2012,21(4):745-750. 被引量:2
  • 6Sun Baofa. MUSIC based on uniform circular array and its directionfinding efficiency[ J]. International Journal of Signal ProcessingSystems,2013,1(2) :273-277.
  • 7Tan Ping, Wang Pian, Luo Ye,et al. Study of 2D DOA estimation foruniform circular array in wireless location system [ J ]. InternationalJournal of Computer Network and Information Security,2010,2(2):54-60.
  • 8郑春弟,解春维,李有才.基于实值特征值分解的求根MUSIC算法[J].数据采集与处理,2010,25(2):154-159. 被引量:10
  • 9Swami A,Sadler B M. Hierarchical digital modulation classification u-sing cumulants [ J ]. IEEE Trans on Communications, 2000 , 48.3):416-429.
  • 10Shao M,Nikias C L. Signal processing with fractional lower order mo-ments :stable processes and their applications [ J ]. Proceedings ofthe IEEE,1993,81 (7) :986-1010.

二级参考文献38

  • 1王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1998:313-343.
  • 2Gardner W A, Napolitano A, and Paura L. Cyclostationarity: half a century of research[J]. Elsevier Science Signal Processing, 2006, 86(44): 639-697.
  • 3Nikias C L and Shao M. Signal Processing with Alpha Sable Distributions and Applications[M]. New York: John Wiley & Sons Inc, 1995: 3-10.
  • 4里红杰 栗娜 邱天爽.脉冲噪声条件下基于循环平稳特性的MIMO系统辨识.信号处理,2007,23(4):356-364.
  • 5Schell S V, Calabretta R A, Gardner W A, and Agee B G. Cyclic music algorithms for signal-selective direction estimation[C]. IEEE Transactions on Acoustics, Speech, and Signal Processing, Glasgow, UK, May 23-26, 1989, 4: 2278-2281.
  • 6Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
  • 7Shao M and Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986-1010.
  • 8Liu Tsung-Hsien and Mendel J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605-1613.
  • 9Zha Daifeng, Zheng Zuoshuang, and Gao Xiaoying. Robust time delay estimation method based on fractional lower order cyclic statistics[C]. International Conference on Wireless Communications, Networking and Mobile Computing 2007, Shanghai, Sept 21-25, 2007: 1304-1307.
  • 10Krim H,Viverg M.Two decades of array signal processing research:the parametric approach[J].IEEE Signal Processing Magazine,1996,13(7):67-94.

共引文献17

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部