期刊文献+

基于Manhattan距离与随机邻域嵌入的故障特征提取算法 被引量:8

Fault feature extraction method based on Manhattan distance and stochastic neighbor embedding
下载PDF
导出
摘要 随机邻域嵌入(stochastic neighbor embedding,SNE)算法在欧氏距离基础上定义了邻域概率函数,是一种基于数据间相似度的降维方法。针对欧氏距离在高维数据空间中不能提供较大的相对距离差、无法明显体现高维数据对象之间差异性的问题,提出一种基于Manhattan距离的随机邻域嵌入(Manhattan-SNE)算法。采用Manhattan距离衡量高维数据对象之间的相异度,得到高维空间和低维空间数据对象之间相似度的条件概率,嵌入目标是使得高维空间和低维空间的分布形式尽可能一致,选择KL散度作为算法的目标函数,通过梯度下降法寻找目标函数的最小值,从而得到算法的低维嵌入。测试与实验分析结果表明:所提算法的平均分类正确率有明显提高,证明了改进算法的有效性与实用性,可以用于故障数据的特征提取。 SNE algorithm was a dimensionality reduction method based on the similarity between data points. It defined a probability distribution over all the potential neighbors of the object based on Euclidean distance. Euclidean distance did not provide a larger relative distance between high-dimensional data points,and might not express the differences between high-dimensional data points well. This paper proposed an improved Manhattan-SNE algorithm. The algorithm used Manhattan distance to measure the dissimilarities between the high-dimensional data points,and then got the conditional probabilities of the high-dimensional and the low-dimensional space data points. The aim of the embedding was to match the distributions between the two spaces as well as possible. It used a gradient descent method to minimize Kullback-Leibler divergences. Experimental results show that Manhattan-SNE has higher classification accuracy,and also demonstrates the effectiveness and practicality.The improved algorithm can solve the fault feature extraction problem.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期2992-2995,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(51075069)
关键词 随机邻域嵌入 欧氏距离 Manhattan距离 故障特征提取 stochastic neighbor embedding(SNE) Euclidean distance Manhattan distance fault feature extraction
  • 相关文献

参考文献17

  • 1Yu J B. Local and nonlocal preserving projection for bearing defectclassification and performance assessment [ J ]. IEEE Trans OH In-dustrial 曰ectronics,2012,59(5) :2363-2376.
  • 2Jolliffe I. Principal component analysis [ M ]. New York : Springer,1986.
  • 3Jutten C, Herault J. Blind separation of sources, part I:an adaptivealgorithm based on neuromimetic architecture [ J ] . Signal Process-ing,1991,24( I ) :1-10.
  • 4Borg I, Groenen P. Modem multidimensional scaling: theory and ap-plications [J]. Journal of Educational Measurement,2003,40(3):277-280.
  • 5Hastie T, Stuetzle W. Principal curves [J]. Journal of the Ameri-can Statistical Association, 1989,84(406) :502-516.
  • 6Tenenhaum J B, De Silva V,Langford J C. A global geometric frame-work for nonlinear dimensionality reduction [ J]. Science,2000,290(5500):2319-2323.
  • 7Etemad K, Chellappa R. Discriminant analysis for recognition of hu-man face images [J]. Journal of the Optical Society of America,1997,14(8):1724-1733.
  • 8陈法法,汤宝平,苏祖强.基于等距映射与加权KNN的旋转机械故障诊断[J].仪器仪表学报,2013,34(1):215-220. 被引量:38
  • 9Howeis S T, Saul L K. Nonlinear dimensionality reduction by locallylinear embedding [ J]. Science,2000,290(5500) :2323-2326.
  • 10Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques forembedding and clustering [ C ]//Advances in Neural Information Pro-cessing Systems. 2002:585-592.

二级参考文献30

  • 1周圣武,周长新,李金玉.概率论与数理统计[M].北京:煤炭工业出版社,2007:61-87.
  • 2TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000,290 (5500) :2319-2323.
  • 3VIACHOS M, DOMENICONI C, GUNOPULOS D, et al. Non-linear dimensionality reduction techniques for classi- fication and visualization [ C ]. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2002: 645-651.
  • 4ZHA H Y, ZHANG Z Y, Continuum Isomap for manifold learnings[J]. Computational Statistics & Data Analysis, 2007 (52) :184-200.
  • 5JIANG Q SH,JIA M P,HU H,et al. Machinery fault diagnosis using supervised manifold learning [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 7 ): 2301-2311.
  • 6LI M, XU J W, YANG J H, et al. Multiple manifolds analysis and its application to fault diagnosis [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 8 ): 2500-2509.
  • 7LEI Y G,ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm [J]. Mechanical Systems and Signal Processing,2009,23 (5) : 1535-1547.
  • 8SON J D, NIU G, YANG B S, et al. Development of smart sensors system for machine fault diagnosis [ J ]. Expert Systems with Applications,2009,36 (9) : 11981-11991.
  • 9HUANG N E, SHEN Z, LONG S R. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc. R. Soc. Lond. , A, 1998 (454) :903-995.
  • 10KOUROPTEVA O, OKUN O, HADID A,et al. Beyond locally linear embedding algorithm, MVG-01-2002 [ R ]. Finland : Machine Vision Group, University of Oulu, 2002 : 1-49.

共引文献43

同被引文献76

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部