摘要
针对传统的计算机视觉方法对复杂物体重建效果不完整的缺点,提出一种基于图像分割的三维点云深度值合成算法。该算法将输入图像过分割为一系列形状、大小相近的超像素,用图结构的方法找到与重建效果欠佳的目标超像素颜色、距离均相近的源超像素,并将源超像素的深度信息传播到目标超像素区域。实验证明,该算法能够修补三维点云中缺失的深度,最终改善三维点云的重建效果。
Aiming at the poor performance of using traditional computer vision based methods to reconstruct complicated objects,this paper proposed a depth synthesis algorithm based on segmentation of input images. The algorithm over-segmented input images into a set of superpixels in nearly the same shape and size,and found source superpixels both similar and approximate to the poor reconstructed target superpixels using graph structure. Then,it propagated the depth information of source superpixels to the target superpixels. Experiments have proved that the method can integrate the missing depth information of 3D point cloud and improve the 3D reconstruction result.
出处
《计算机应用研究》
CSCD
北大核心
2015年第10期3168-3170,3190,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(41201482)
关键词
三维重建
点云
分割
超像素
深度值合成
3D reconstruction
point cloud
segmentation
superpixel
depth synthesis