期刊文献+

基于图像分割的三维点云深度值合成

3D point cloud depth synthesis based on image segmentation
下载PDF
导出
摘要 针对传统的计算机视觉方法对复杂物体重建效果不完整的缺点,提出一种基于图像分割的三维点云深度值合成算法。该算法将输入图像过分割为一系列形状、大小相近的超像素,用图结构的方法找到与重建效果欠佳的目标超像素颜色、距离均相近的源超像素,并将源超像素的深度信息传播到目标超像素区域。实验证明,该算法能够修补三维点云中缺失的深度,最终改善三维点云的重建效果。 Aiming at the poor performance of using traditional computer vision based methods to reconstruct complicated objects,this paper proposed a depth synthesis algorithm based on segmentation of input images. The algorithm over-segmented input images into a set of superpixels in nearly the same shape and size,and found source superpixels both similar and approximate to the poor reconstructed target superpixels using graph structure. Then,it propagated the depth information of source superpixels to the target superpixels. Experiments have proved that the method can integrate the missing depth information of 3D point cloud and improve the 3D reconstruction result.
作者 黄訸 黄山
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期3168-3170,3190,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(41201482)
关键词 三维重建 点云 分割 超像素 深度值合成 3D reconstruction point cloud segmentation superpixel depth synthesis
  • 相关文献

参考文献14

  • 1Koenderink J J, Van Doom A J. Affine structure from motion [ J ].Journal of Optical Society of America,1991,8(2) :377-385.
  • 2Furukawa Y, Ponce J. Accurate, dense, and robust multiviewstereopsis [ J ]. IEEE Trans on Pattern Analysis and MachineIntelligence,2010,32(8) :1362-1376.
  • 3Suavely N , Seitz S M , Szeliski K. Photo tourism : exploring photo col-lections in 3D[ J]. ACM Trans on Graphics,2006,25 (3) :835-846.
  • 4Tuite K, Snavely N,Hsiao D,ei al. F^ioto city: training experts al large-scale image acquisition through a competitive game[ C]//Proc of SIG-CHI Conference on Human Factors in Computing Systems. New York :ACM Press,2011 :1383-1392.
  • 5Agarwal S,Furukawa Y,Snavely N,et al. Building Rome in a day[ J].Communications of the ACM,2011,54(10) :105-112.
  • 6Chaurasia G, Duchene S, Sorkine-Homung Oyet al. Depth synthesisand local warps for plausible image-based navigation[ J] . ACM Transon Graphics,2013,32(3) :30.
  • 7Goesele M,Ackermann J,Fuhrmann S,et al. Ambient point clouds forview interpolation[ J]. ACM Trans on Graphics,2010,29(4) :95.
  • 8王春瑶,陈俊周,李炜.超像素分割算法研究综述[J].计算机应用研究,2014,31(1):6-12. 被引量:116
  • 9Levinshtein A,Stere A,Kutulakos K N,et al. Turbopixels:fast super-pixels using geometric flows[ J]. IEEE Trans on Pattern Analysisand Machine intelligence,2009,31 (12) :2290-2297.
  • 10Felzenszwalb P F,Huttenlocher D P. Efficient graph-based image seg-mentation[ J]. International Journal of Computer Vision,2004,59(2):167-181.

二级参考文献40

  • 1REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 2FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 3SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 4SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 5MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.
  • 6LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104.
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598.
  • 8COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619.
  • 9VEDALDI A, SOATTO S. Quick shift and kernel methods for mode seeking [ M ]//Computer Vision. Berlin: Springer-Verlag, 2008: 705-718.
  • 10LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. Turbotfi- xels: fast superpixels using geometric flows [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2290- 2297.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部