期刊文献+

不同蛋白酶和水解条件对酪蛋白酶解产物性质的影响 被引量:9

Effects of protease and hydrolysis conditions on the properties of casein hydrolysates
下载PDF
导出
摘要 采用碱性蛋白酶、木瓜蛋白酶、菠萝蛋白酶和胰蛋白酶分别对酪蛋白进行酶解,发现碱性蛋白酶水解酪蛋白的水解程度最大。当酪蛋白经不同的酶水解至相同水解度(DH)时,酶解物的分子量分布存在显著差异。随后选定碱性蛋白酶以考察水解条件对酪蛋白酶解产物性质的影响,采用p H-stat法控制水解过程p H恒定(8.5±0.02),制备DH8%和12%的酶解产物,分别测定其DPPH自由基清除率,TCA可溶性氮含量,采用SE-HPLC测定分子量分布。结果表明,不同酶解条件下,DH 8%和DH 12%水解产物的DPPH自由基清除率分别为32.76%-34.02%和39.87%-41.02,DH 8%和DH 12%水解产物的TCA可溶性氮含量值分别为58.98%-60.43%和69.69%-70.34%。方差分析显示水解度相同,不同产物的DPPH自由基清除率无显著性差异,TCA可溶性氮含量的结果亦如此(p〉0.05)。HPLC的结果进一步证明尽管水解条件不同,水解至相同DH时,水解产物的分子量分布一致。 Casein was hydrolyzed by alcalase,papain,trypsin and bromrlain,respectively,which showed that casein was hydrolyzed to the maximum degree by alcalase.Also molecular weight distribution of the casein hydrolyzed by various proteases,showed great difference when compared under the same DH.Then Alcalase was chosen for the next research,casein hydrolysates with DH 8% and 12% were prepared by p H- stat method,DPPH scavenging ability and TCA solubility were determined.The result showed that DPPH scavenging ability of DH 8% and DH 12%hydrolysates varied from 32.76% to 34.02% and 39.87% -41.02%,respectively,the value interval of TCA solubility of DH 8% and DH 12% hydrolysates were 58.98% to 60.43% and 69.69% - 70.34%,respectively. According to the result of analysis of variance,for the given enzyme- substrate system,the properties of casein hydrolysates with the same DH were independent of variations hydrolysis conditions( hydrolysis temperature and enzyme / substrate ratio). The molecular weight distribution of HPLC confirmed that hydrolysates molecular weight were similar with each other when compared at the same DH.
出处 《食品工业科技》 CAS CSCD 北大核心 2015年第19期181-185,共5页 Science and Technology of Food Industry
基金 国家自然基金(31201380) 江苏省自然科学基金(BK2011151)
关键词 酶水解 p H-stat 水解度 差异性 enzyme hydrolysis p H-stat hydrolysis degree differentiation
  • 相关文献

参考文献11

  • 1Jung S,Roussel - Philippe C,Briggs Jenny L,et al. LimitedHydrolysis of Soy Proteins with Endo- and Exoproteases [ J].Journal of the American Oil Chemists’ Society,2004,10(81):953 -960.
  • 2Kurozawa L E,Park K J,Hubinger M D.Optimization of theenzymatic hydrolysis of chicken meat using response surfacemethodology [ J ] . Journal of food science, 2008, 73 ( 5 ):C405-C412.
  • 3Gbogourl G A, Linder M, Fanni J, et al. Influence ofHydrolysis Degree on the Functional Properties of SalmonByproducts Hydrolysates [ J] . Journal of Food Science,2004,69(8):C615-C622.
  • 4Alemdn A,Gimenez B,Perez — Santin E. Contribution of Leuand Hyp residues to antioxidant and ACE-inhibitory activities ofpeptide sequences isolated from squid gelatin hydrolysate [ J ].Food Chemistry,2011,125:334-341.
  • 5Adler- Nissen J.Limited Enzymic Degradation of Proteins: ANew Approach in the Industrial Application of Hydrolases [ J ].Journal of Chemistry Technical and Biotechnol, 1982,32:138-156.
  • 6Jollgs P. Progress in the Chemistry of Casein [ J ]. AngewandteChemie-International Edition, 1996,5(6) :558-566.
  • 7Alder - Nissen J. Enzymic hydrolysis of food protein [ M ].London : Elsevier Applied Science Publisher ,1986;132-155.
  • 8Bersuder P, Hole M. Antioxidants from a Heated Histidine-Glucose Model System I : Investigation of the Antioxidant Role ofHistidine and Isolation of Antioxidants by High - PerformanceLiquid Chromatography [ J ] . Journal of the American OilChemists’ Society ,1998,75 :181-187.
  • 9赵沙沙,孔祥珍,苏芮,华欲飞.大豆蛋白酶解过程中聚集行为的研究[J].中国粮油学报,2014,29(4):16-21. 被引量:3
  • 10Mohamed I M. Enzymatic Hydrolysis of Casein : Effect ofDegree of Hydrolysis on Antigenicity and Physical Properties[ J].Journal of Food Science,1992,57 : 1223-1229.

二级参考文献12

  • 1于泓鹏,唐传核,曾庆孝,杨晓泉.大豆分离蛋白水解多肽聚集物的组成及相互作用[J].华南理工大学学报(自然科学版),2006,34(8):105-109. 被引量:15
  • 2Liu C,Wang X S,Ma H,et al.Functional properties of protein isolates from soybeans stored under various conditions[J].Food Chemistry,2008,111 (1):29-37.
  • 3Remkema J M S,Knabben J H M,Vliet T V.GEL formation by β-conglycinin and glycinin and their mixtures[J].Food Hydrocolloids,2001,15 (4-6):407-415.
  • 4Panyam D,Kilar A.Enhancing the functionality of food proteins by enzymatic modification[J].Trends in Food Science & Tchnology,1996,7 (4):120-125.
  • 5Nagai K,Inouye K.Insights into the reaction mechanism of the coagulation of soy protein isolates induced by subtilisin carlsberg[J].Journal of Agricultural and Food Chemistry,2004,52:4921-4927.
  • 6Inouye K,Nagai K,Takita T.Coagulation of soy protein isolates induced by subtilisin carlsberg[J].Journal of Agricultural and Food Chemistry,2002,50:1237-1242.
  • 7Kuipers Bas J H,Harry G.Identification of strong aggregating regions in soy glycinin upon enzymatic hydrolysis[J].Journal of Agricultural and Food Chemistry,2008,56:3818-3827.
  • 8Kuipers Bas J H,Gerrit A,Arno C,et al.Opposite contributions of glycinin and β-conglycinin derived peptides to the aggregation behavior of soy protein isolate hydrolysates[J].Food Biophysics,2006 (1):178-188.
  • 9Nagano T,Motoyoshiya J,Kakehi A,et al.Dynamic viscoelastic study on the gelation of 7S globulin from soybeans[J].Journal of Agricultual and Food Chemistry,1992,40 (6):941-944.
  • 10Adler-Nissen J.Enzymic hydrolysis of food proteins[M].London:Elsevier Applied Science Publishers,1986,122-123.

共引文献2

同被引文献102

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部