期刊文献+

方波外场下有限维量子系统的控制协议

Control protocol of finite dimensional quantum system using alternating square pulse
下载PDF
导出
摘要 研究利用方型交替场进行有限维量子系统的控制协议.通过一个多循环的过程把量子系统控制到任意给定的目标态,在每个循环里利用方波脉冲控制系统能级间单个或几个跃迁.研究系统包括:除第1能级间隔外其他都一样的有限维系统;第1和第3能级间隔相等的4能级系统;各能级间隔都一样的3能级系统.目标态几率幅与系统与外场的作用时间以及系统的自由演化时间满足三角函数关系,并可解析地确定. A control protocol to drive finite dimensional quantum systems to an arbitrary target state is proposed explicitly by using square pulses. It is a multi-cycle control process, and in each cycle we apply square pulses to cause a single or a few transitions between energy levels. Systems with equal energy gaps except for the first one, four-dimensional systems with equal first and third energy gaps but different second energy gap, and three- dimensional systems with all equal energy gaps are investigated in detail. The control parameters, namely the interaction time between systems and control fields as well as free evolution times between cycles, are connected with the probability amplitudes of target states via trigonometric functions and are determined analytically.
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2015年第5期441-448,共8页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61374057) 深圳市科技研发基金资助项目(ZYC201105170224A)~~
关键词 量子物理 量子控制 控制协议 有限维量子系统 方波脉冲 时间演化算符 quantum physics quantum control control protocol finite dimensional quantum system square pulse time evolution operator
  • 相关文献

参考文献23

  • 1Belavkin V P. On the theory of controlling observablequantum systems [ J ]. Automation and Remote Control,1983, 44(2) : 178-188.
  • 2Huang G M,Tam T J,Clark J W. On the controllabilityof quantum-mechanical systems [ J ]. Journal of Mathe-matical Physics, 1983,24(11) : 2608-2618.
  • 3Blaqui^re A, Diner S, Lochak G. Information complexityand control in quantum physics [ C ] // Proceedings of the4th International Seminar on Mathematical Theory ofDynamical Systems and Microphysics Udine. Vienna:Springer,1987.
  • 4Butkovskiy A G,Samoilenko Y I. Control of quantum-mechanical processes and systems [ M ]. Dordrecht(Netherlands) : Kluwer Academic, 1990.
  • 5Jurdjevic V. Geometric control theory [ M ]. Cambridge(UK) : Cambridge University Press, 1997.
  • 6Lloyd S. Coherent quantum feedback [ J ]. PhysicalReview A,2000,62(2) : 022108.
  • 7Peirce A P,Dahleh M A, Rabitz H. Optimal control ofquantum-mechanical systems : Existence, numericalapproximation,and applications [ J]. Physical Review A,1988,37(12) : 4950-4964.
  • 8Bartana A, Kosloff R,Tannor D J. Laser cooling of mole-cules by dynamically trapped states [ J ]. ChemicalPhysics, 2001, 267(1) : 195-207.
  • 9Boscain U, Chariot G, Gauthier J P, et al. Optimal con-trol in laser-induced population transfer for two- and three-level quantum systems [ J ]. Journal of MathematicalPhysics, 2002, 43(5) : 2107-2132.
  • 10Ramakrishna V, Rabitz H. Relation between quantumcomputing and quantum controllability [ J ]. PhysicalReview A, 1996,54(2) : 1715-1716.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部