期刊文献+

推广的Baskakov-Durrmeyer型算子在Orlicz空间内的逼近

Approximation for a generalization of Baskakov-Durrmeyer operators in Orlicz space
下载PDF
导出
摘要 根据Baskakov-Durrmeyer算子的有关性质,利用N函数的凸性、Jensen不等式、HardyLittlewood极大函数和光滑模等,讨论了Baskakov-Durrmeyer算子的Bezier变形形式在Orlicz空间内逼近的有关结论. According to the nature of Baskakov-Durrmeyer operators, the convex property of N-function, Jensen inequality, Hardy-Littlewood great function and modulus of smoothness we used as tools to prove approximation theorems of the operators in Orlicz space.
出处 《高师理科学刊》 2015年第9期1-2,共2页 Journal of Science of Teachers'College and University
基金 国家自然科学基金资助项目(11161033) 内蒙古师范大学人才工程基金资助项目(RCPY-2-2012-K-036) 内蒙古师范大学研究生科研创新基金资助项目(CXJJS14053)
关键词 推广的Baskakov-Durrmeyer算子 ORLICZ空间 K泛函 逼近 generalized Baskakov-Durrmeyer operators Orlicz space K -functional approximation
  • 相关文献

参考文献6

  • 1Bezier P. Numerical Control-Mathematics and Applications[M]. London: John Wiley and Sons, 1972.
  • 2郭顺生,刘国芬.推广的Baskakov-Durrmeyer型算子在L_p[0,∞)空间中的逼近(英文)[J].数学进展,2013,42(3):327-338. 被引量:2
  • 3吴从忻 王廷辅.奥尔里奇空间及其应用[M].哈尔滨:黑龙江科学技术出版社,1983..
  • 4Wu Garidi. On Ap~ximation by Polynomials in Orlicz Spaces[J]. Approximation Theory and its Applications, 1991, 7 ( 3 ) 97-110.
  • 5Zeng X M, Gupta V. Rate of convergence Baskakov-Bezer type operators for locally bounded function[J]. Comput Math Appl, 2002, 44 ( 10/11 ): 1445-1453.
  • 6谢敦礼.连续正算子LM逼近的阶[J].杭州大学学报,1981,8(2):142-146.

二级参考文献9

  • 1Heilmann, M., Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 1989, 5(1): 105-127.
  • 2Bezier, P., Numerical Control---Mathematics and Applications, London: John Wiley \& Sons, 1972.
  • 3Chang G.Z., Generalized Bernstein-Bezier polynomials, J. Comput. Math., 1983, 1(4): 322-327.
  • 4Liu Z.X., Approximation of continuous functions by the generalized Bernstein-Bezier polynomials, Approx. Theory Appl., 1986, 2(4): 105-130.
  • 5Zeng X.M. and Gupta, V., Rate of convergence of Baskakov-Bezier type operators for locally bounded functions, Comput. Math. Appl., 2002, 44(1011): 1445-1453.
  • 6Zeng X.M. and Piriou, A., On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions, J. Approx. Theory, 1998, 95(3): 369-387.
  • 7Zeng X.M., On the rate of convergence of the generalized Szasz type operators for functions of bounded variation, J. Math. Anal. Appl., 1998, 226(2): 309-325.
  • 8Ditzian, Z. and Totik, V., Moduli of Smoothness, New York: Springer-Verlag, 1987.
  • 9Guo S.S., Qi Q.L. and Liu G.F., The central approximation theorems for Baskakov-Bezier operators, J. Approx. Theory, 2007, 147(1): 112-124.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部