期刊文献+

罗尔定理应用中辅助函数的构造

The construction of auxiliary functions using Rolle′s theorem
下载PDF
导出
摘要 应用罗尔定理证明问题时常通过构造一个与问题相关的辅助函数达到解决问题的目的,这既是证明的需要,也是证明的关键.构造辅助函数没有固定的模式与方法,具有较强的技巧性,是高等数学学习的一个重点内容,也是一个难点问题.给出凑原函数法、乘积因子法、不定积分法、微分方程法、常数k值法等5种常用的罗尔定理应用中构造辅助函数的方法,使辅助函数的构造有章可循,为教学提供参考. When applying Rolle's theorem to prove mathematical problems, constructing a problem-related auxiliary function is one of the most common ways, which is not only necessary but critical for the mathematical proof. However, the construction of auxiliary functions usually doesn't have fixed patterns and methods but needs skillful techniques. It is a key content and difficult point during the process of learning and teaching advanced mathematics. Discussed five common used methods for constructing the auxiliary function when applying Rolle's theorem, including primitive function method, multiplication factor method, indefinite integration method, differential equation method and constant k-value method. With the help of in-depth understanding of those methods, proposed some guiding principles for the construction of auxiliary functions when using Rolle's theorem, which provide insights for teaching and learning advanced mathematics in practice.
作者 卢刚夫
出处 《高师理科学刊》 2015年第9期75-78,共4页 Journal of Science of Teachers'College and University
关键词 罗尔定理 辅助函数 构造方法 Rolle's theorem auxiliary function construction method
  • 相关文献

参考文献4

二级参考文献7

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部