期刊文献+

基于混沌特性的情感语音特征提取 被引量:12

Feature Extraction of Emotional Speech Based on Chaotic Characteristics
下载PDF
导出
摘要 根据语音发声过程中的混沌特性,应用非线性动力学模型分析情感语音信号,提取了该模型下情感语音信号的非线性特征以及常用的声学特征(韵律特征和MFCC).设计情感语音识别对比实验,将非线性特征与不同声学特征融合并验证了该组合下的情感识别性能,研究了语音信号混沌特性对情感语音识别性能的影响.实验选用德国柏林语音库4种情感(高兴、愤怒、悲伤和中性)作为语料来源,支持向量机网络用于情感识别.结果表明,非线性特征有效表征了情感语音信号的混沌特性,与传统声学特征结合后,情感语音识别性能得到了显著提高. Based on the chaotic characteristics of emotional speech,nonlinear features and frequently used acoustic features were extracted to effectively differentiate emotions by applying a nonlinear dynamic model to analyzethe emotional speech signals.The effectiveness of nonlinear features was verified by comparison with the integrated model of nonlinear features with different acoustic features(prosodic features and MFCC)on the recognition rates of emotional speech.It also studied the influences of chaotic characteristics of speech signals on the recognition rates of emotional speech.Four types of emotion(happiness,anger,sadness,and neutrality)from Berlin databasewere selected and support vector machine was used for emotion recognition.The results show the nonlinear features effec-tively represent the chaotic characteristics of emotional speech signals.The recognition rates of emotional speech can be significantly improved when nonlinear features are combined with traditional acoustic features.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2015年第8期681-685,共5页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61371193) 山西省青年科技研究基金资助项目(2013021016-2) 山西省回国留学人员科研资助项目(2013-034)
关键词 情感语音识别 混沌特性 支持向量机 非线性特征 emotional speech recognition chaotic characteristic support vector machine nonlinear feature
  • 相关文献

参考文献12

  • 1韩文静,李海峰,阮华斌,马琳.语音情感识别研究进展综述[J].软件学报,2014,25(1):37-50. 被引量:171
  • 2Anagnostopoulos C N, Iliou T, Giannoukos I. Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011 [J]. Artificial Intelligence Re- view, 2012, 43(2): 155-157.
  • 3Screenivasa R K, Shashidhar G K. Robust Emotion Rec- ognition Using Spectral and Prosodic Features [M]. New York: Springer, 2013.
  • 4赵力,黄程韦.实用语音情感识别中的若干关键技术[J].数据采集与处理,2014,29(2):157-170. 被引量:36
  • 5Patricia H, Jesus B A, Miguel A F, et al. Global selec- tion of features for nonlinear dynamics characterization of emotional speech [J]. Cognitive Computation, 2013, 5(4): 517-525.
  • 6Patricia H, Jesus B A, Miguel A F, et al. Nonlinear dynamics characterization to emotional speech [J]. Neu- rocomputing, 2014(132) : 126-135.
  • 7李响,谭南林,李国正,郭然.一种应用语音多特征检测驾驶疲劳的方法[J].仪器仪表学报,2013,34(10):2231-2237. 被引量:15
  • 8Zbancioc M D. Using the Lyaptmov exponent from cep- stral coefficients for automatic emotion recognition [C]//Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering. Iasi: IEEE, 2014: 110-113.
  • 9Takens F. Detecting strange attractors in turbulence [C]// Lecture Notes in Math. New York: Springer, 1981: 366-381.
  • 10赵贵兵,石炎福,段文锋,余华瑞.从混沌时间序列同时计算关联维和Kolmogorov熵[J].计算物理,1999,16(3):309-315. 被引量:64

二级参考文献132

  • 1赵力,王治平,卢韦,邹采荣,吴镇扬.全局和时序结构特征并用的语音信号情感特征识别方法[J].自动化学报,2004,30(3):423-429. 被引量:15
  • 2王治平,赵力,邹采荣.基于基音参数规整及统计分布模型距离的语音情感识别[J].声学学报,2006,31(1):28-34. 被引量:26
  • 3Picard R W. Affective computing[M]. Cambridge: MIT Press, 1997.
  • 4Picard R W. Toward computers that recognize and respond to user emotion[J]. IBM Technical Journal, 2000, 38(2): 705-719.
  • 5Scherer K R, Banziger T. Emotional expression in prosody: A review and an agenda for future research [C]//SP2004(Speech Prosody 2004). Nara, Japan: International Speech Communication Association, 2004:355-369.
  • 6Arnold M. Emotion and personality[J]. Psychologi- cal Aspects, 1960,1 : 11-116.
  • 7Tomkins A S S. The negative affects[J]. Affect, Imagery, Consciousness, 1962,2 : 111-116.
  • 8vMurray I, Amott J L. Towards the simulation of e motion in synthetic speech: A review of the literature on human vocal emotion[J]. Journal of the Acoustic Society of America, 1993,93(2) : 1097-1108.
  • 9Ortony A, Turner T J. Whatrs basic about basic e- motions[J]. Psychological Review, 1990, 97 (3): 315-331.
  • 10Stibbard R M. Vocal expression of emotions in mon laboratory speech: An investigation of the reading/ leeds emotion in speech porject annotation data[D]. UK: University of Reading,2001.

共引文献263

同被引文献69

引证文献12

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部