期刊文献+

标度总体最小二乘在坐标转换中的应用

Application of Scaled Total Least Squares in Coordinate Transformation
下载PDF
导出
摘要 将顾及观测向量与系数矩阵权比的总体最小二乘法应用于三维坐标转换,阐述了验前单位权方差法和目标函数最小化法确定观测向量与系数矩阵标度的计算步骤,结合算例探讨了两种方法的适用特点,得出了有益的结论。 The total least squares method which takes the observation vector and the coefficient matrix weight ratio into count is applied to 3D coordinate transformation. The calculation steps of the prior unit weight variance method and the minimum objective function method for determining the scaling factor of observation vector and coefficient matrix was proposed. The characteristics and practical range of two methods were summarized in the example and some useful conclusions were drawn.
出处 《测绘与空间地理信息》 2015年第10期45-47,共3页 Geomatics & Spatial Information Technology
基金 国家自然科学基金项目(41274009)资助
关键词 标度总体最小二乘 权比 三维坐标转换 平差 scaled total least squares weight ratio coordinate transformation adjustment
  • 相关文献

参考文献6

二级参考文献34

  • 1陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:170
  • 2魏子卿.关于2000中国大地坐标系的建议[J].大地测量与地球动力学,2006,26(2):1-4. 被引量:58
  • 3陈俊勇.大地坐标框架理论和实践的进展[J].大地测量与地球动力学,2007,27(1):1-6. 被引量:48
  • 4Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 5Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 6Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 7Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.
  • 8Schaffrin B. A Note on Constrained Total Leastsquares Estimation[J]. Linear Algebra Appl, 2006, 417(1) :245-258.
  • 9Eckart C, Young G. The Approximation of One Matrix by Another of Lower Rank [J]. Psychometrika ,1936,1(3) :211-218.
  • 10Van Huffel S, Vandewalle J. The Total Leastsquares Problem Computational Aspects and Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1991.

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部