期刊文献+

荧光金纳米团簇及其在生命分析中的应用 被引量:6

Fluorescent gold nanoclusters and their applications in biomedical analysis
下载PDF
导出
摘要 金纳米团簇(gold nanoclusters,Au NCs),一种新型的荧光纳米材料,是指在一定的分子层保护下,由几个到几百个金原子组成的相对稳定的分子级聚集体。由于其直径一般小于2 nm,接近于电子的费米波长,产生了类似分子的性质,如离散的电子态、尺寸依赖的荧光发光等。荧光金纳米团簇具有尺寸小、生物相容性好、光学稳定性好、Stokes位移大、发射光谱可调谐以及无毒等优点,弥补了传统的有机荧光染料、荧光蛋白、荧光量子点等荧光探针的一些缺点,近年来已经成为国际上的研究热点。本文结合当前的研究现状,重点阐述金纳米团簇的性质、制备方法及其在生物活性小分子检测和细胞标记成像中的应用。 Gold nanoclusters (AuNCs), a new type of fluorescent nanomaterials, refer to the molecular species which consist of a few to a hundred atoms under the protection of the molecular layer. Their diameter are generally less than 2 nm and comparable to the Fermi wavelength of electrons, bring about molecule-like properties such as discrete electronic states and size-dependent fluorescence. Recently, AuNCs have become a hot topic owing to their perfect properties including ultrasmall size, good biocompatibility, excellent optical stability, large Stokes shift, tunable emission spectra as well as non-toxic, which make up some disadvantages of the traditional fluorescent labeling materials like organic fluorescent dyes, fluorescent protein, and quantum dots. With further research, fluorescence gold nanoclusters have shown broad application prospects in the fields of chemical analysis, biomedicine, optoelectronics. In this review, we highlight the properties, preparation of AuNCs and recent advances in fluorescene determination of biological organic molecules and cell imaging.
出处 《世界复合医学》 2015年第3期262-271,共10页 World Journal of Complex Medicine
基金 国家自然科学基金(21175023)
关键词 金纳米团簇 荧光探针 纳米材料 制备 生命分析 gold nanoclusters fluorescence bioprobe nanomaterials fabrication biomedical analysis
  • 相关文献

参考文献4

二级参考文献56

  • 1Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M Science 2013, 341 (6149), 974.
  • 2Han, S. S.; Jung, D. H.; Choi, S. H.; Heo, J. ChemPhysChem 2013, 14 (12), 2698. doi: 10.1002/cphc.vl4.12.
  • 3Guo, J. H.; Zhang, H.; Miyamoto, Y. Phys. Chem. Chem. Phys 2013, 15 (21), 8199. doi: 10.1039/c3cp50492a.
  • 4Yang, Q.; Liu, D.; Zhong, C.; Li, J. R. Chem. Rev. 2013, 113 (10), 8261. doi: 10.1021/cr400005f.
  • 5Pathak, B.; Pradhan, K.; Hussain, T.; Ahuja, R.; Jena, E ChemPhysChem 2012, 13 (1), 300. doi: 10.1002/cphc.201100585.
  • 6Varin, R. A.; Zbroniec, L. J. Alloy. Compd. 2010, 506 (2), 928. doi: 10.1016/j.jallcom.2010.07.119.
  • 7Xu, J.; Qi, Z.; Cao, J.; Meng, R.; Gu, X.; Wang, W.; Chen, Z. Dalton Trans. 2013, 42 (36), 12926. doi: 10.1039/c3dt50933h.
  • 8Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116 (24), 13143. doi: 10.1021/jp302356q.
  • 9Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112 (2), 673. doi: 10.1021/cr300014x.
  • 10Mendoza-Cortes, J. L.; Goddard, W. A., Ⅲ; Furukawa, H.; Yaghi, O. M. J. Phys. Chem. Lett. 2012, 3 (18), 2671. doi: 10.1021/jz301000m.

共引文献22

同被引文献29

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部