期刊文献+

Highly Efficient Hybrid White Tandem Organic Light-Emitting Diodes with MoO3 Layer

Highly Efficient Hybrid White Tandem Organic Light-Emitting Diodes with MoO3 Layer
原文传递
导出
摘要 Electroluminescence (EL) characteristics have been studied for a hybrid tandem white organic light emitting diode (OLED) with a blue emitting fluorescent EL1 unit based on BCzVBi and a yellow emitting phosphorescent EL2 unit based on (fbi)2Ir(acac), where a MoO3 layer is inserted between EL1 and EL2 units as charge generation layer (CGL). Maximum current and power efficiencies of 68.1 cd/A and 29.2 lm/W were obtained, respectively, while the current and power efficiencies at luminance of 1000 cd/m2 were 68.0 cd/A and 24.6 lm/W. The yellow emission appears from about 4.5 V firstly, while the blue emission starts to appear from about 5.4 V. It was found that charge generation from CGL of MoO3/NPB bilayer occurred at high voltages of above 5.4 V but not at low voltages below 5.2 V. Electroluminescence (EL) characteristics have been studied for a hybrid tandem white organic light emitting diode (OLED) with a blue emitting fluorescent EL1 unit based on BCzVBi and a yellow emitting phosphorescent EL2 unit based on (fbi)2Ir(acac), where a MoO3 layer is inserted between EL1 and EL2 units as charge generation layer (CGL). Maximum current and power efficiencies of 68.1 cd/A and 29.2 lm/W were obtained, respectively, while the current and power efficiencies at luminance of 1000 cd/m2 were 68.0 cd/A and 24.6 lm/W. The yellow emission appears from about 4.5 V firstly, while the blue emission starts to appear from about 5.4 V. It was found that charge generation from CGL of MoO3/NPB bilayer occurred at high voltages of above 5.4 V but not at low voltages below 5.2 V.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2015年第8期859-864,共6页 中国化学(英文版)
关键词 organic light emitting diode white emission tandem device organic light emitting diode, white emission, tandem device
  • 相关文献

参考文献44

  • 1Qi, x. F.; Li, N.; Forrest, S. R..I. Appl. Phys. 2010, 107, 014514.
  • 2Chiba, T.; Pu, Y. J.; Miyazaki, R.; Nakayama, K.; Sasabe, H.; Kido, J. Org. Electron. 2011, 12, 710.
  • 3Lee, H. D.; Lee, S. J.; Lee, K. Y.; Kim, B. S.; Lee, S. H.; Bae, H. D.; Tak, Y. H. Jpn. ,I. Appl. Phys. 2009, 48, 082101.
  • 4Wang, Q.; Ding, J. Q.; Zhang, Z. Q.; Ma, D. G.; Cheng, Y. X.; Wang, L. X.; Wang, F. S. J. Appl. Phys. 2009, 105, 076101.
  • 5Ho, M. H.; Chen, T. M.; Yeh, P. C.; Hwang, S. W.; Chen, C. H. Appl. Phys. Lett. 2007, 91, 233507.
  • 6Guo, F. W.; Ma, D. G. Appl. Phys. Lett. 2005, 87, 173510.
  • 7Spindler, J. P.; Hatwar, T. K. Soc. lnf Display 2009, 17, 861.
  • 8Hatwar, T. K.; Spindler, J. P.; Hatwar, T. K.; Kondakova, M.; Gie- sen, D.; Deaton, J.; Vargas, J. R. SID Digest 2010, 778.
  • 9Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9 (in Chinese).
  • 10Chen, C. W.; Lu, Y. J.; Wu, C. C.; Wu, E. H. E.; Chu, C. W.; Yang, Y. Appl. Phys. Lett. 2005, 87, 241121.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部