期刊文献+

滑坡位移的动态概率预测模型 被引量:6

A dynamic probabilistic model for landslide displacement prediction
下载PDF
导出
摘要 滑坡位移预测是实现滑坡灾害预报的有效手段,文章利用回声状态网络建立动态预测模型来预测滑坡位移。与传统预测方法相比,动态模型能更好地反映出滑坡演化的动态系统本质;动态模型的建立不需要计算互信息来实现变量选择,也使得预测过程得到简化。考虑到确定性预测的局限性,文章进一步将概率预测的思想引入滑坡位移预测的研究中,提出一种动态预测模型的概率预测方法。所提动态预测模型的预测精度,在白水河和石榴树包两个滑坡位移预测的具体案例中得到了检验;而通过概率预测得到具有明确置信度水平的预测区间,从而也对滑坡状态发展变化趋势给出了更全面的描述。 Landslide displacement prediction is an effective approach for establishing early warning systems of landslide disasters. In this study, echo state networks are employed to build dynamic predictors. As compared to conventional static predictors, dynamic predictors can properly express the dynamic nature of landslide systems. Furthermore, mutual information based the feature selection processes can also be avoided in the modelling processes of dynamic predictors. Considering the limitation of deterministic predictions, the dynamic predictor is further developed into a probabilistic predictor. The effectiveness of the proposed approach is verified in the case studies of the Baishuihe landslide and Shiliushubao landslide. The proposed probabilistic predictor generates prediction intervals with confidence levels, and more comprehensive descriptions for the developing trends of landslides can accordingly be obtained.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2015年第5期134-139,148,共7页 Hydrogeology & Engineering Geology
基金 国家自然科学基金项目(61203286)
关键词 滑坡位移 预测 动态系统 递归神经网络 landslide displacement prediction dynamic system recurrent neural network
  • 相关文献

参考文献15

  • 1王利,张勤,管建安,孔令杰.基于GPS技术的滑坡动态变形监测试验结果与分析[J].武汉大学学报(信息科学版),2011,36(4):422-426. 被引量:19
  • 2PAGANO L,PICAftELLI L,RIANNA G,et al.A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils[J].Landslides,2010,7(3):273-289.
  • 3RAN Y F,XIONG G C,LI S S,et al.Study on deformation prediction of landslide based on genetic algorithm and improved BP neural network[J]. Kybernetes,2010,39(8):1245-1254.
  • 4黄海峰,易武,易庆林,卢书强,王世梅.滑坡位移分解预测中的平滑先验分析方法[J].水文地质工程地质,2014,41(5):95-100. 被引量:18
  • 5WENG M C,WU M H,NING S K,et al.Evaluating triggering and causative factors of landslides in Lawnon River Basin,Taiwan[J].Engineering Geology,2011,123(1/2):72-82.
  • 6DU J,YIN K,LACASSE S.Displacement prediction in colluvial landslides,Three Gorges Reservoir,China [J].Landslides,2012,10(2):1-16.
  • 7徐峰,汪洋,杜娟,叶疆.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报,2011,30(4):746-751. 被引量:100
  • 8KRASKOV a,stogbauer h,grassberger p. Estimating mutual information[J].Physical review E,2004,69(6):1-16.
  • 9BATTITI R.Using mutual information for selecting features in supervised neural net learning[J].IEEE Transactions on Neural Networks,1994,5(4):537-550.
  • 10PENG H,LONG F,DING C.Feature selection based on mutual information criteria of max dependency,max relevance,and min redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.

二级参考文献78

共引文献166

同被引文献66

引证文献6

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部