期刊文献+

赫尔曼的模态结构主义 被引量:1

Hellman's Modal-structuralism
原文传递
导出
摘要 以消除本体论预设为宗旨,赫尔曼提出了模态结构主义思想,并发展为数学结构主义中极富影响力的理论框架。模态结构主义强调避免对结构或位置进行逐个量化,而是将结构主义建立在某个域以及该域上满足由公理系统给出隐含定义条件之关系的二阶逻辑可能性上。但以二阶逻辑与初始模态事实为基础,导致其理论实际建立在集合论之上,显然与结构主义初衷不符。此外,其对结构的模态中立主义态度,导致无法说明数学的可应用性,难以规避语义学难题。 For the purpose of eliminating the ontological presupposition, Geoffrey Hellman proposed his modal strncturalism. It has developed into an influential systematic theory so far. To avoid quantifying over individual structure or location, modal strncturalism is building up on the second order possibilities of some domains and their appropriate relations (which are given by implicit definitions of the axiom system). But its presuppositions on second order logic and initial modal facts turn out to be on the basis of set theory, which obviously does not accord with its origi- nal purpose of structuralism. In addition, its modal neutralism results in the inability to illustrate the applicability of mathematics, which is hard to avoid semantic problems.
作者 刘杰 孙曌莉
出处 《科学技术哲学研究》 CSSCI 北大核心 2015年第5期25-30,共6页 Studies in Philosophy of Science and Technology
基金 国家社会科学基金青年基金项目(11CZX022) 教育部重点研究基地重大项目(11JJD720011) 山西省高等学校哲学社会科学研究项目(2013301)
关键词 模态 数学基础 结构主义 modal mathematical foundation structuralism
  • 相关文献

参考文献7

  • 1Putnam H. Mathematics without Foundations [ J ]. The Jour- nal of Philosophy, 1967,64 ( 1 ) : 5 - 22.
  • 2Hellman G. Three Varieties of Mathematical Structuralism [ J ]. Philosophia Mathematica,2001,9 (3) : 199.
  • 3Hellman G. Mathematics Without Numbers:Towards a Mo- dal-Structural interpretation [ M ]. Clarendon Press, Oxford University Press, Oxford and New York, 1989.
  • 4Cocchiarella N. On the Primary and Secondary Semantics of Logical Necessity [ J ]. Journal of Philosophical Logic, 1975 (4) :13 -27.
  • 5许涤非.经典数学的逻辑基础[J].哲学研究,2012(3):98-104. 被引量:1
  • 6Quine W V O. Philosophy of Logic[ M]. En- glewoods Cliffs, NJ: Prentice-Hall, 1970.
  • 7刘杰.理解数学:代数式的进路——访英国利物浦大学哲学系玛丽·兰博士[J].哲学动态,2007(11):36-42. 被引量:1

二级参考文献14

  • 1Boolos,G.,1987,“A curious inference”,in Journal of Philosophical Logic16.
  • 2Church,A.,1956,Introduction to Mathematical Logic,Princeton University Press.
  • 3Cocchiarella,N.,1986,“Fege,Russell and logicism”,in L.Haaparanta and J.Hintikka(eds.),Frege Synthesized,Dordrecht:Reidel.
  • 4Detlefsen,M.,2004,“Philosophy of mathematics in the twentieth century”,in S.G.Shanker(ed.),Routledge History of Philosophy,vol.IX,Philosophy of Science,Logic and Mathematics in the Twentieth Century.
  • 5Kreisel,G.,1967,“Informal rigour and completeness proofs”,in I.Lakato(ed.),Problems in the Philosophy of Mathematics,North-Holland,Amsterdam.
  • 6Montague,R.,1965,“Set theory and higher-order logic”,in J.Crossley and M.Dummett(eds.),Formal Systems and Recursive Functions,North-Holland,Amsterdam.
  • 7Moore,G.H.,1988,“The emergence of first-order logic”,in W.Asparay and Ph.Kitcher(eds.),History and Philosophy of Modern Math-ematics,University of Minneapolis Press.
  • 8Quine,W.V.O.,1948,“On what there is”,reprinted in Quine,1980.
  • 9Shapiro,S.,1991,Foundations without Foundationalism(A Case for Second-order Logic),Oxford:Clarendon Press.
  • 10Skolem,T.,1928,“Uber die mathematische logik”,in Norsk Matematisk Ttidsskrift10,tran.in J.van Heijenoort,1967,From Frege toGdel,Harvard University Press.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部