期刊文献+

On the Numerical Solution of Some Eikonal Equations:An Elliptic Solver Approach

On the Numerical Solution of Some Eikonal Equations:An Elliptic Solver Approach
原文传递
导出
摘要 The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators.Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第5期689-702,共14页 数学年刊(B辑英文版)
基金 supported by the National Science Foundation(No.DMS-0913982)
关键词 Eikonal equations Maximal solutions Regularization methods Operator slalitting Finite element methods 程函方程 求解方法 数值解 椭圆 非线性方程 变分参数 初始值问题 数值方法
  • 相关文献

参考文献14

  • 1Caffarelli, L. and Crandall, M. G., Distance functions and almost global solutions of Eikonal equations, Comm. Partial Differential Equations, 3, 2010, 391-414.
  • 2Dacorogna, B., Glowinski, R., Kuznetzov, Y. and Pan, T.-W., On a Conjuguate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems, Application to the Solution of an Eikonal System with Dirichlet Boundary Conditions, Conjugate Gradient Algorithms and Finite Element Methods, M. Krizek, P. Neittaanmaki, R. Glowinski and S. Korotov (eds.), Springer-Verlag, Berlin, Heidelberg, 2004, 263-283.
  • 3Dacorogna, B., Glowinski, R. and Pan, T.-W., Numerical methods for the solution of a system of Eikonal equations with Dirichlet boundary conditions, C. R. Acad. Sci. Paris, Ser. I, 336, 2003, 511-518.
  • 4Dacorogna, B. and Marcellini, P., Implicit Partial Differential Equations, Birkhaiiser, Basel, 1999.
  • 5Dacorogna, B. and Marcellini, P. and Paolini, E., Lipschitz-continuous local isometric immersions: Rigid maps and origami, Journal Math. Puree Appl., 90, 2008, 66-8l.
  • 6Dacorogna, B., Marcellini, P. and Paolini, E., Origami and partial differential equations, Notices of the American Math. Soc., 57, 2010, 598-606.
  • 7R. Glowinski, Finite element method for incompressible viscous flow, Volume IX of Handbook of Numerical Analysis, P. G. Ciarlet, J. L. Lions (eds.), Elsevier, Amsterdam, 2003, 3-1176.
  • 8Glowinski, R., Kuznetzov, Y. and Pan, T.-W., A penalty/Newton/conjugate gradient method for the solution of obstacle problems, C. R. Acad. Sci. Paris, Ser. I, 336, 2003, 435-440.
  • 9Kimmel, R. and Sethian, J. A., Computing geodesic paths on manifolds, Proceedings of National Academy of Sciences, 95(15), 1998, 8431-8435.
  • 10Malladi, R. and Sethian, J., A unified approach to noise removal, image enhancement, and shape recovery, IEEE Trans. on Image Processing, 5(11), 1996, 1554-1568.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部