On the Numerical Solution of Some Eikonal Equations:An Elliptic Solver Approach
On the Numerical Solution of Some Eikonal Equations:An Elliptic Solver Approach
摘要
The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators.Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint.
基金
supported by the National Science Foundation(No.DMS-0913982)
参考文献14
-
1Caffarelli, L. and Crandall, M. G., Distance functions and almost global solutions of Eikonal equations, Comm. Partial Differential Equations, 3, 2010, 391-414.
-
2Dacorogna, B., Glowinski, R., Kuznetzov, Y. and Pan, T.-W., On a Conjuguate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems, Application to the Solution of an Eikonal System with Dirichlet Boundary Conditions, Conjugate Gradient Algorithms and Finite Element Methods, M. Krizek, P. Neittaanmaki, R. Glowinski and S. Korotov (eds.), Springer-Verlag, Berlin, Heidelberg, 2004, 263-283.
-
3Dacorogna, B., Glowinski, R. and Pan, T.-W., Numerical methods for the solution of a system of Eikonal equations with Dirichlet boundary conditions, C. R. Acad. Sci. Paris, Ser. I, 336, 2003, 511-518.
-
4Dacorogna, B. and Marcellini, P., Implicit Partial Differential Equations, Birkhaiiser, Basel, 1999.
-
5Dacorogna, B. and Marcellini, P. and Paolini, E., Lipschitz-continuous local isometric immersions: Rigid maps and origami, Journal Math. Puree Appl., 90, 2008, 66-8l.
-
6Dacorogna, B., Marcellini, P. and Paolini, E., Origami and partial differential equations, Notices of the American Math. Soc., 57, 2010, 598-606.
-
7R. Glowinski, Finite element method for incompressible viscous flow, Volume IX of Handbook of Numerical Analysis, P. G. Ciarlet, J. L. Lions (eds.), Elsevier, Amsterdam, 2003, 3-1176.
-
8Glowinski, R., Kuznetzov, Y. and Pan, T.-W., A penalty/Newton/conjugate gradient method for the solution of obstacle problems, C. R. Acad. Sci. Paris, Ser. I, 336, 2003, 435-440.
-
9Kimmel, R. and Sethian, J. A., Computing geodesic paths on manifolds, Proceedings of National Academy of Sciences, 95(15), 1998, 8431-8435.
-
10Malladi, R. and Sethian, J., A unified approach to noise removal, image enhancement, and shape recovery, IEEE Trans. on Image Processing, 5(11), 1996, 1554-1568.
-
1J.-D. Benamou,Songting Luo,Hongkai Zhao.A COMPACT UPWIND SECOND ORDER SCHEME FOR THE EIKONAL EQUATION[J].Journal of Computational Mathematics,2010,28(4):489-516.
-
2Alexandre CABOUSSAT,Roland GLOWINSKI.A Penalty-Regularization-Operator Splitting Method for the Numerical Solution of a Scalar Eikonal Equation[J].Chinese Annals of Mathematics,Series B,2015,36(5):659-688.
-
3郑神州,郑学良.BIANALYTIC FUNCTIONS, BIHARMONIC FUNCTIONS AND ELASTIC PROBLEMS IN THE PLANE[J].Applied Mathematics and Mechanics(English Edition),2000,21(8):885-892. 被引量:1
-
4Jian Cheng LIU,Li DU.Biharmonic Submanifolds in δ-Pinched Riemannian Manifolds[J].Journal of Mathematical Research and Exposition,2010,30(5):891-896. 被引量:3
-
5Ban, HD,Tang, WJ.THE BOUNDARY INTEGRO-DIFFERENTIAL EQUATIONS OF A BIHARMONIC BOUNDARY VALUE PROBLEM[J].Journal of Computational Mathematics,1999,17(1):59-72.
-
6Xian Feng WANG,Lan WU.Proper Biharmonic Submanifolds in a Sphere[J].Acta Mathematica Sinica,English Series,2012,28(1):205-218. 被引量:1
-
7DENG Yinbin(Department of Mathematics,Huazhong Normal University,Wuhan 430070,China)YANG Jianfu(Department of Mathematics,Nanchang University,Nanchang 330047,China).EXISTENCE OF MULTIPLE SOLUTIONS AND BIFURCATIONFOR CRITICAL SEMILINEAR BIHARMONIC EQUATIONS[J].Systems Science and Mathematical Sciences,1995,8(4):319-326. 被引量:4
-
8郭守月,穆姝慧,袁兴红,周倩.GRIN介质中的程函方程与光线方程[J].吉林大学学报(理学版),2011,49(3):533-536. 被引量:2
-
9杨钢,董新平.经典统计力学与几何光学的相似性[J].许昌学院学报,2008,27(5):64-65.
-
10郭守月,周倩,袁兴红,穆姝慧,冯克成.基于Maxwell电磁论的波动方程与光线轨迹方程[J].吉林大学学报(理学版),2013,51(6):1151-1154. 被引量:1