Identifiability and Stability of an Inverse Problem Involving a Fredholm Equation
Identifiability and Stability of an Inverse Problem Involving a Fredholm Equation
摘要
The authors study a linear inverse problem with a biological interpretation,which is modelled by a Fredholm integral equation of the first kind, where the kernel is represented by step functions. Based on different assumptions, identifiability, stability and reconstruction results are obtained.
基金
partially supported by the Basal-CMM Project,the Fondecyt Grant(No.1130317,1111012,1140773)
"Agence Nationale de la Recherche" Project CISIFS(No.ANR-09-BLAN-0213-02)
partially supported by ECOS-CONICYT C13E05 and Basal-CeBiB
参考文献10
-
1Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, Ann Arbor, London, 1992.
-
2Flannery, R., French, D. A. and Kleene, S. J., Clustering of CNG channels in grass frog olfactory cilia, Biophysical J., 91, 2005, 179-188.
-
3French, D. A. and Edwards, D. A., Perturbation approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation, J. Math. Biol., 55, 2007, 745-765.
-
4French, D. A., Flannery, R. J., Groetsch, C. W., et al., Numerical approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation, Mathematical and Computer Modelling, 43, 2006, 945-956.
-
5French, D. A. and Groetsch, C. W., Integral equation models for the inverse problem of biological ion channel distributions, Journal of Physics: Conference Series, 73(012006), 2007, 1742-6596.
-
6Kleene, S. J., Origin of the chloride current in olfactory transduction, Neuron, 11, 1993, 123-132.
-
7Kleene, S. J. and Gesteland, R. C., Calcium-activated chloride conductance in frog olfactory cilia, J.Neurosci., 11, 1991, 3624-3629.
-
8Kleene, S. J. and Gesteland, R. C., Transmembrane currents in frog olfactory cilia, J. Membr. Biol., 120, 1991, 75-8l.
-
9Kleene, S. J., Gesteland, R. C. and Bryant, S. R., An electrophysiological survey of frog olfactory cilia, J.Exp. Bioi., 195, 1994, 307-328.
-
10Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.
-
1陈忠,周永芳,赵春燕.求解线性Volterra-Fredholm方程的新方法[J].哈尔滨师范大学自然科学学报,2015,31(3):44-45. 被引量:1
-
2赵华祥,闫宝强.抽象空间中非线性脉冲Fredholm积分方程的正解[J].山东工业大学学报,1999,29(4):328-332.
-
3石军.非光滑下Fredholm方程的校正galerkin方法[J].中国科学院研究生院学报,1992,9(4):350-355.
-
4刘清荣,田有先.一类线性积分方程解的存在唯一性[J].纯粹数学与应用数学,1994,10(2):110-113.
-
5崔俭春,刘福春.带有变换及共轭的奇异积分方程[J].石油大学学报(自然科学版),1997,21(6):104-105.
-
6谭长明.Banach空间Fredholm型积分方程解的存在性判定[J].通化师范学院学报,2007,28(2):8-9.
-
7曾红云.周期孔洞的混合边值问题[J].湘潭大学自然科学学报,2000,22(4):19-22. 被引量:1
-
8ZOU Zhenyu ,CHOW Chenyu(Chengdu Institute of Computer Applications, Academia Sinica, Chengdu 610041, China).A KIND OF STRUCTURE MODELS FOR DOUBLEPOROSITY MEDIUM SYSTEMS AND ITS IDENTIFICATION PROBLEMS[J].Systems Science and Mathematical Sciences,1998,11(3):260-271. 被引量:1
-
9杨平,伍继梅,吴开谡.无穷限第一类Fredholm方程的正则化方法[J].北京化工大学学报(自然科学版),2013,40(B12):117-121. 被引量:1
-
10房艮孙.核由混合偏导数优控的Fredholm方程类的计算复杂性[J].中国科学(A辑),1995,25(10):1019-1028. 被引量:6