期刊文献+

The Role of a Vanishing Interfacial Layer in Perfect Elasto-Plasticity

The Role of a Vanishing Interfacial Layer in Perfect Elasto-Plasticity
原文传递
导出
摘要 A two-phase elasto-plastic material is investigated. It is shown that, if the interface is modeled as the limit of a vanishing layer of a third material, then the resulting two-phase material will exhibit a smaller interracial dissipation than that of a pure two- phase model.
机构地区 LAGA DICATAM
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第5期813-828,共16页 数学年刊(B辑英文版)
关键词 PLASTICITY Variational Evolutions INTERFACES Functions of bounded deformation 界面层 理想弹塑性 弹塑性材料 两相材料 损耗比
  • 相关文献

参考文献12

  • 1Ambrosio, L., Coscia, A. and Dal Maso, G., Fine properties of functions with bounded deformations, Arch.Rat. Mech. Anal., 139, 1997, 201-238.
  • 2Ambrosio, L., Fusco, N. and Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.
  • 3Dal Maso, G., DeSimone, A. and Mora, M. G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180(2), 2006, 237-29l.
  • 4Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions, CRC Press, Boca Raton, FL,1992.
  • 5Francfort, G. A. and Giacomini, A., Small-strain heterogeneous elastoplasticity revisited, Comm. Pure Appl. Math., 65(9), 2012, 1185-124l.
  • 6Kohn, R. V. and Temam, R., Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim., 10(1), 1983, 1-35.
  • 7Mainik, A. and Mielke, A., Existence results for energetic models for rate-independent systems, Calc. Var.Partial Differential Equations, 22(1), 2005, 73-99.
  • 8Mielke, A., Evolution of rate-independent systems, Evolutionary Equations. Vol. II, Handb. Differ. Equ., Dafermos, A. and Feireisl, E. (eds.), Elsevier, North-Holland, Amsterdam, 2005, 461-559.
  • 9Solombrino, F., Quasistatic evolution problems for nonhomogeneous elastic plastic materials, J. Convex Anal., 16(1), 1979, 89-119.
  • 10Suquet, P. M., Un espace fonctionnel pour les equations de la plasticite, Ann. Fac. Sci. Toulouse Math. (5), 1(1), 1979, 77-87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部