期刊文献+

决策中主观价值计算与整合的神经机制及其影响因素 被引量:1

The Neural Mechanism and Influencing Factors of the Subjective Value Computation and Integration during Decision-making
下载PDF
导出
摘要 决策在人类社会发展历程中扮演着非常重要的角色,而学界对其神经机制的探讨才不过几十年的时间。价值决策理论认为,人们先计算和表征事物的价值,随后进行比较和决策。在人脑中负责主观价值计算的神经基础有腹内侧前额叶皮层、眶额皮层、杏仁核等,而负责价值整合的脑区有腹侧纹状体、腹内侧前额叶皮层、眶额皮层等。人脑将不同属性及成本按照曲线交互模式进行整合形成主观价值,并通过自我控制、注意、认知调节和情绪调节等手段,调节主观价值。未来需要强调模式分析、个体差异和网络分析对价值计算与整合的影响。 Decision-making plays a very important role in the history of human social development, and it was only a few decades ago when researchers started to explore its neural mechanism. There is a growing consensus in decision neuroscience that brain makes simple choices by first assigning a value to all of the options under consideration and then compares them, and finally choosing the biggest value option to guide decision- making. This understanding then was named the value-based decision theory. It is popular for decision researchers and was used to explain all kinds of human behaviors in the domains of decision-making about value-based decision theory. In our review, we focus on the subjective value computation and integration during inter-temporal choice and risky decision-making because there are numerous reviews about the value computation and integration of stimulus rewards including food, water, fruit juice, money, and erotic stimulus in all kinds of species. These studies emphasized that value computation is not separable with the region of ventral medial prefrontal cortex, and there are distributed neural representation to compute the subjective value along the gradient of posterior-anterior axis which is consistent with the view of evolutionary of human brain and individual development. In this review, we summarize that the neural basis of the subjective value computation is related to the ventromedial prefrontal cortex, orbitofrontal cortex, amygdala and so on, whereas the neural basis of the subjective value integration is related to the ventromedial prefrontal cortex, orbitofrontal cortex, dorsal lateral prefrontal cortex and so on in the human brain. Meanwhile, the computation related to time and risk have common neural pattern using multiple-voxel pattern analysis, and human brain can integrate distinct attributes and costs to form the subjective value using the model of curve interaction on the regions of VMPFC and OFC. Furthermore, we believe that the human brain uses distinct regions to compute the value of alternatives of which output signals are input of another region (VMPFC) to integrate and form the subjective value. We can modulate the subjective value through self-control, attention and cognitive and emotion regulation methods. Self-control changes the subjective value of rewards by executive control mechanism, which engages dorsal lateral prefrontal cortex modulates the value computation and integration that engages ventral medial prefrontal cortex. Attention is thought to play a key role in the computation of stimulus values at the time of choice, which suggests that attention manipulations be used to improve decision-making in domains where self-control lapses are pervasive. We believe that the neural mechanisms used in successful self-control can be activated by exogenous attention cues which modulate stimulus value signals, and attention-modulated relative value signals may serve as the input of a comparator system that is used to make a choice. The computational and neurobiological mechanisms of cognitive regulation during decision making use two distinct regulatory mechanisms including value modulation (changing the values assigned to stimuli) and behavioral control modulation (changing how value signals affect behavior) which is related to VMPFC and DLPFC. Future research should continue emphasizing multi-voxel pattern analysis, individual differences and network analysis on the effect of value computation and integration.
作者 朱海东 汪强
出处 《心理科学》 CSSCI CSCD 北大核心 2015年第5期1095-1102,共8页 Journal of Psychological Science
关键词 主观价值 神经计算 价值整合 公共货币 subjective value, neural computation, value integration, neural currency
  • 相关文献

参考文献56

  • 1付梅,汪强.跨期决策的神经机制:基于体素形态学和弥散张量成像研究的证据[J].心理科学进展,2014,22(4):659-667. 被引量:4
  • 2刘洪志,江程铭,饶俪琳,李纾.“时间折扣”还是“单维占优”?——跨期决策的心理机制[J].心理学报,2015,47(4):522-532. 被引量:23
  • 3汪强,张恩茂.降低决策冲动性的方法及其神经机制[J].心理科学进展,2015,23(1):101-109. 被引量:4
  • 4Ainslie, G. (1975). Specious reward: A behavioral theory of impulsiveness and impulse control. Psychological Bulletin, 82(4), 463-496.
  • 5Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the Nagonal Academy of Sciences of the United States of Amenc 108(25), 10367-10371.
  • 6BaUard, K., & Knutsun, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neurolmage, 45(1), 143-150.
  • 7Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neth'olmage, 76, 412-427.
  • 8Basten, U., Bide, G., Heekeren, H. R., & Fiebach, C. J. (2010). How the brain integrates costs and benefits during decision making. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21767-21772.
  • 9Bechara, A., Damasio, H., & Damio, A. R. (2000). Emotion, decision making and the orbitofrental cortex. Cerebral Cortex, 10(3), 295-307.
  • 10Beeker, G. M., DeGroot, M. H., & Marschak, J. (1964). Measuring utility by a single-response sequential method. BehavioralScience, 9(3), 226-232.

二级参考文献108

  • 1孙彦,李纾,殷晓莉.决策与推理的双系统——启发式系统和分析系统[J].心理科学进展,2007,15(5):721-726. 被引量:147
  • 2Anstey, K. J., Lipnicki, D. M., & Low, L. (2008). Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. American Journal of Geriatric Psychiatry, 16(5), 343—354.
  • 3Bauer, A. S., Timpe, J. C_,Edmonds, E. C.,Bechara, A., Tranel, D” & Denburg, N. L. (2013). Myopia for the future or hypersensitivity to reward? Age-related changes in decision making on the Iowa Gambling Task. Emotion, 13{\), 19-24.
  • 4Brand, M., Labudda, K.,Kalbe, E” Hilker, R.,Emmans, D., Fuchs, G.,...Markowitsch, H. J. (2004). Decision-making impairments in patients with Parkinson's disease. Behavioural Neurology, 75(3), 77—85.
  • 5Brand, M.,Labudda, K.,& Markowitsch, H. J. (2006). Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks, i9(8), 1266-1276.
  • 6Brandstatter, E., Gigerenzer, G., & Hertwig,R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113(2), 409-432.
  • 7Brookmeyer, R.,Johnson, E., Ziegler-Graham, K.,& Arrighi,H. M. (2007). Forecasting the global burden of Alzheimer,s disease. Alzheimer's & Dementia, 3(3), 186-191.
  • 8Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2007). Individual differences in adult decision-making competence. Journal of Personality and Social Psychology, 92(5), 938-956.
  • 9Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2012). Explaining adult age differences in decision-making competence. Journal of Behavioral Decision Making, 25(4), 352-360.
  • 10Buelow, M. T., & Suhr, J. A. (2009). Construct validity ofthe Iowa gambling task. Neuropsychology Review, 190. 102-114.

共引文献26

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部