期刊文献+

各向异性发射点源几何外形对目标红外信号的影响

Influences of Geometrical Shapes on Infrared Signatures for Anisotropic Emitting Point Targets
原文传递
导出
摘要 基于材料的各向异性发射特性,以点目标红外探测为应用模型,采用蒙特卡洛法建立从目标到探测器的红外传输模型,分析四种简单几何体表面的各向异性发射特性对目标红外信号的影响。结果表明,点源红外信号对各向异性发射特性的灵敏性与目标几何外形及目标表面发射率的角度分配性有关。当半球发射率保持一定时,点源信号对法向小辐角发射模型灵敏度较高,且增大法向发射率可提高目标总红外辐射强度。另外,相比椭球体、圆柱体和圆锥体,球体红外信号对各向异性发射的灵敏度最低,即发射率的角度分配性对球体目标红外信号影响最小。 The paper applies the anisotropic emission behavior of materials to the point-source infrared (IR) detection research. The target-to-detector IR transmission model is established via the Monte Carlo method, and the effects of the anisotropic emission patterns of the target surface upon the target's IR signatures for four simple geometrical objects are investigated. It is concluded that the sensitivity of point-source signals to anisotropic emission behavior is related to the target's geometrical shapes and the emission angular patterns of the target surface. As the hemispherical emissivity is kept constant, the signals are highly sensitive to the near-normal emission patterns with narrow radiant angular widths, and increasing the normal emissivity can enhance the total energy intensity. In addition, compared with the ellipsoid, cylinder and cone, the sphere is the least sensitive to anisotropic emission patterns, which signifies that the angular distribution of emission has the minimal impacts upon the sphere.
作者 崔雪 黄勇
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第9期1995-1999,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51376016) 高等学校博士学科点专项科研基金(No.20121102110015)
关键词 各向异性 方向发射率 灵敏度 几何外形 anisotropic emission directional emissivity sensitivity geometrical shape
  • 相关文献

参考文献16

  • 1Modest M F. Radiative Heat Transfer [M]. 2nd ed. Waltham: Academic Press, 2003.
  • 2Sonawane H R, Mahulikar S P. Tactical Air Warfare: Generic Model for Aircraft Susceptibility to Infrared Guided Missiles [J]. Aerospace Science and Technology, 2011, 15:249-260.
  • 3Coiro E. Global Illuminatin Technique for Aircraft In- frared Signature Calculation [J]. Journal of Aircraft, 2013, 50:1.
  • 4Wang H Y, Zhang W, Wang F F. Infrared Imaging Char- acteristics of Space-based Targets Based on Bidirectional Reflection Distribution Function [J]. Infrared Physics ~r Technology, 2012, 55:368-375.
  • 5Pei Y, Meng H, Song B F. Shotline Method for Estimating Aircraft Infrared Radiant Intensity [J]. Journal of Aircraft, 2011, 48(6): 1928-1934.
  • 6Lefebvre S, Roblin A, Varet S, Durand G. A Method- ological Approach for Statistical Evaluation of Aircraft Infrared Signature [J]. Reliability Engineering and System Safety, 2010, 95:484493.
  • 7Greffet J J, Carminati R, Joulain K, et al. Coherent Emis- sion of Light by Thermal Sources [J]. Nature, 2002, 416: 6.
  • 8Lee B J, Zhang Z M. Coherent Thermal Emission From Modified Periodic Multilayer Structures [J]. Journal of Heat Transfer. 2007, 129:17-26.
  • 9Kumar M S, Menabde S, Yu S, Park N. Directional Emis- sion from Photonic Crystal Waveguide Terminations Us- ing Particle Swarm Optimization [J]. Journal of the Opti- cal Society of America B, 2010, 27:343-349.
  • 10Han Y G, Ma W, Xuan Y M. Theoretical Investigation on Degradation Behaviors of Spectral Properties of Ther- mal Control Coatings Induced by Charged Particles [J]. Applied Surface Science, 2013, 282:363-369.

二级参考文献29

  • 1HANMaohua LIANGXingang HUANGYong.Thermal radiation characteristics of plane-parallel SiC wafer[J].Chinese Science Bulletin,2005,50(4):295-298. 被引量:3
  • 2戴逸生.微弱信号检测方法及仪器[M].北京:国防工业出版社,1994..
  • 3王义玉.红外探测器[M].北京:兵器工业出版社,1992..
  • 4钟任华,飞航导弹红外导引头,1995年
  • 5杨宜禾,红外系统,1995年
  • 6戴逸生,微弱信号检测方法及仪器,1994年
  • 7王义玉,红外探测器,1992年
  • 8刘景生,红外物理,1992年
  • 9PIETER A Jacobs. Thermal infrared characterization of ground targets and backgrounds [ M]. 2ndEdition, Wash- ington, SPIE Press, 2006.
  • 10MAHULIKAR S P, SONAVANE H R, RAO G A. Infrared signature studies of aerospace vehicles [ J ]. Progress in Aerospace Sciences, 2007, 43(7-8), 218.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部