期刊文献+

单通道通信信号盲分离算法 被引量:4

Blind Separation Algorithm of Single Channel Communication Signals
下载PDF
导出
摘要 针对空间侦察中单通道宽带接收机截获到多个独立辐射源信号时的盲源分离问题,提出了一种基于希尔伯特黄变换(HHT)的单通道通信信号源数估计,以及采用独立分量分析(ICA)实现盲源分离的方法。上述算法首先对单通道混合通信信号进行希尔伯特黄(HHT)变换,得到混合信号的边际谱。然后通过边际谱得到通信信号源数目,根据源信号数目以及本征模态函数(IMF)重组多通道混合通信信号,并通过独立分量分析(ICA)算法来恢复原始信号。仿真结果表明,分离前后信号的相似系数大于0.9,改进算法能够有效地估计单通道通信信号源数目并且准确分离盲源。 Contrary to the blind source separation of a plurality of independent radiation source singles intercepted by single-channel wideband receiver for space reconnaissance, a novel method was proposed, which is based on Hil- bert-Huang Transform(HHT) to estimate the number of the single channel communication signals, and Independent Component Analysis(ICA) to separate the blind source signals. Firstly, the HHT was applied on the single channel mixed communication signals and the marginal spectrum of this mixed signals was obtained. Then we estimated the source number of the communication signals with the marginal spectrum, reorganized the muhichannel mixed commu- nication signals according to the source signal number and its Intrinsic Mode Function ( IMF), and recovered the source signals by the method of ICA. The results of simulation experiments show that the similarity coefficient of the signals separation is larger than 0.9 and the proposed algorithm can estimate the number of the single channel commu- nication signals effectively and separate the blind source accurately.
出处 《计算机仿真》 CSCD 北大核心 2015年第9期205-208,285,共5页 Computer Simulation
关键词 单通道 盲源分离 希尔伯特黄变换 边际谱 独立分量分析 Single channel Blind source separation Hilbert- Huang transform (HHT) Marginal spectrum In-dependent component analysis(ICA)
  • 相关文献

参考文献13

二级参考文献123

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2蔡权伟,魏平,肖先赐.基于模型拟合的重叠信号盲分离方法[J].电子学报,2005,33(10):1794-1798. 被引量:6
  • 3王欣.信源数目欠估计、过估计对DOA估计精度的影响[J].火控雷达技术,2006,35(2):61-63. 被引量:5
  • 4蔡权伟,魏平,肖先赐.单信道多信号分量分离[J].通信学报,2006,27(6):49-56. 被引量:11
  • 5[1]L.Xie,Wu Keijian,L.J.Pietrafesa.Empirical modes of landfalling tropical cyclones in North Carolina[C].24th Conference on Hurricanes and Tropical Meteorology,Fort Lauderdale,2000,1-68.
  • 6[3]C.Jutten,J.Herault.Blind separation of sources,Part Ⅰ:An adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 7Cichocki A and Amari S.Adaptive Blind Signal and Image Processing:Learning Algorithms and Application[M].New York:Wiley Press,2002:24-42.
  • 8Souloumiac A.Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[J].IEEE Transactions on Signal Processing,2009,57(6):2222-2231.
  • 9Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 10Vicente Z and Pierre C.Robust independent component annlysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J].IEEE Transactions on Neural Networks,2010,21(2):248-261.

共引文献73

同被引文献50

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部