期刊文献+

云计算环境下软件异常区域检测模型仿真 被引量:3

Detection Model Simulation of Software Anomaly Area under Cloud Computing Environment
下载PDF
导出
摘要 在云计算环境下针对软件异常区域进行检测的过程中,软件局部区域会遭受恶意攻击,传统的检测算法受到数据冗余的影响,导致检测效率准确性较低。提出基于关键特征映射算法的云计算环境下软件异常区域检测方法。根据最小二乘法相关原理,提取云计算环境下软件异常区域攻击特征,利用主成分分析法,提取主要攻击特征,删除大量的冗余特征,降低计算的复杂性。建立关键特征映射模型,完成云计算环境下软件异常区域检测。实验结果表明,利用改进算法进行云计算环境下软件异常区域检测,能够极大的提高检测的准确性。 A key feature mapping algorithm is proposed based on software anomaly area detection method in cloud computing environment. According to the principle of least square method, the attack characteristics of software a- nomaly area are extracted under the cloud computing environment, the main attack feature is extracted by using prin- cipal component analysis (pea), a large number of redundant features are deleted, and the complexity of calculation is reduced. A key feature mapping model is established, and the detection of software anomaly area is completed in the cloud computing environment. The experimental results show that the improved algorithm can greatly improve the accuracy of detection.
作者 黎明 宋广军
出处 《计算机仿真》 CSCD 北大核心 2015年第9期314-317,共4页 Computer Simulation
基金 黑龙江省自然科学基金(F201204) 黑龙江省教育厅科学技术研究项目(12521615)
关键词 云计算 异常区域检测 特征提取 Cloud computing Abnormal area detection Feature extraction
  • 相关文献

参考文献10

  • 1Mohammad Saniee Abadeh, Jafar Habibi, Zeynab Barzegar, Muna Sergi. A parallel genetic local search algorithm for intrusion detec- tion in computer networks [ J ]. Engineering Applications of Artifi- cial Intelligence, 2007,20(8) :1058-1069.
  • 2Roberto Perdisci, Giorgio Giacint, Fabio Roli. Alarm clustering for intrusion detection systems in computer networks [ J ]. Engi- neering Applications of Artificial Intelligence, 2006,19 (4) : 429 - 438.
  • 3Ivan Goethals, Kristiaan Pelekmans, Johan A K Suykens, Bart De Moor. Identification of MIMO Hammerstein models using least squares support vector machines [ J ]. Automatiea, 2005,41 ( 7 ) : 263-1272.
  • 4Everthon Silva Fonseca, Rodrigo Capobianco Guido, Paulo Rog6rio Sealassara, Carlos Dias Maciel, Jos6 Carlos Pereira. Wavelet time -frequency analysis and least squares support vector machines for the identification of voice disorders[J]. Computers in Biology and Medicine, 2007,37(4) :571-578.
  • 5D Koutsonikolas, S M Das, C Hu. Path Planning of Mobile Land- marks For Localization in Wireless Sensor Networks[ C]. In Proc. of IEEE is Dtributed Computing Systems Workshops, 2006: 80- 86.
  • 6B Waters. Efficient identity-based eneryption without random ora- cles [ C ]. Advances in Cryptology - EUROCRYPT 2005. Berlin : Springer-Verlag, 2005 : 114-127.
  • 7肖立中,邵志清,钱夕元.一种用于网络入侵检测的杂交聚类算法研究[J].计算机工程,2007,33(4):125-127. 被引量:10
  • 8胡艳维,秦拯,张忠志.基于模拟退火与K均值聚类的入侵检测算法[J].计算机科学,2010,37(6):122-124. 被引量:35
  • 9杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 10K V Price, R M Store, J A Lampinen. Differential evolution:A practical approach to global optimization [ M ]. Berlin Heidelberg: Springer, 2005.

二级参考文献19

  • 1谷保平,许孝元,郭红艳.基于粒子群优化的k均值算法在网络入侵检测中的应用[J].计算机应用,2007,27(6):1368-1370. 被引量:24
  • 2Anderson J P. Computer Security Threat Monitoring and Surveillance [R/OL]. http://esre, hist. gov/publications/history/ ande80, pdf, 1980.
  • 3许毓珊.A Hybrid IDS Framework via Deseision Trees and SVMs[D].台北:台湾科技大学,2006:7-9.
  • 4Lee W K, Stolfo S J, Mok K W. A Data Mining Framework for Building Intrusion Detection Models [C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, California, USA.. IEEE Computer Society, 1999 : 120-132.
  • 5Shun J, Malki H Pu Network Intrusion Detection System Using Neural Networks[C]//Proc. of Fourth International Conference on Natural Computation ( ICNC ' 08). Jinan, China, Oct. 2008,5: 242-246.
  • 6KDD Cup 1999 Data [EB/OL]. http://kdd, ics. uci. edu/databases/kddcup99/kddcup99, html, 2009-09-08.
  • 7Treshansky A,McGraw R.An overview of clustering algorithms[A].Proceedings of SPIE,The International Society for Optical Engineering[C].2001(4367):41-51.
  • 8Clausi D A.K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J].Pattern Recognition,2002,35:1959-1972.
  • 9Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man,and Cybernetics _ Part B:Cybernetics,1998,28(3):301-315.
  • 10Ramze R M,Lelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.

共引文献227

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部