期刊文献+

视频图像火灾烟雾识别仿真研究 被引量:7

Video Wildfire Smoke Detection Algorithm Simulation
下载PDF
导出
摘要 研究视频火灾烟雾的准确识别问题。烟雾在有强风干扰的情况下会丢失向上飘动特征,并且烟雾浓度和运动速度发生剧烈变化使火灾图像不在确定范围之内。传统烟雾识别方法多是在光流法的基础上指定向上飘动的主运动方向和烟雾运动速度的范围进行检测,会造成光流特征失效,导致识别率不高。为解决上述问题,提出了一种采用光流特征的烟雾识别算法,首先通过运动和颜色检测提取疑似烟雾区域,然后运用Horn-Schunck(HS)光流法得到像素的运动速度和方向,进而提取光流速度及方向的均值和方差、光流对比度和方向一致性作为特征,最后将光流特征组成的特征向量作为支持向量机(SVM)的输入,进而利用构建的二类分类器对烟雾进行识别。实验结果表明,改进算法能有效识别火灾烟雾,具有较强的抗干扰能力和鲁棒性。 A new smoke detection method is proposed based on optical flow. Firstly,dubious smoke areas are seg- mented by the motion and chrominance detection, then the Horn-Schunck optical flow algorithm is used to obtain pix- el motion vectors. Further, the averages and variations of the optical flow velocity and the orientation, the contrast of optical flow and the orientation consistency are extracted as eigenvalues. The eigenvalues are used as the input vectors of SVM, then a 2-class classifier constructed to detect smoke. The experimental results show that the proposed meth- od can detect wildfire smoke effectively and has strong anti-interference ability and robustness.
作者 陈洁 黄继风
出处 《计算机仿真》 CSCD 北大核心 2015年第9期382-386,共5页 Computer Simulation
基金 上海市教委科研创新重点基金项目(14ZZ125)
关键词 烟雾识别 强风干扰 光流特征 Smoke detection Strong winds interference Feature of optical flow
  • 相关文献

参考文献8

  • 1B C Ko, J 0 Park, J Y Nam. Spatiotemporal bag-of-features for early wildfire smoke detection [ J ]. Image and Vision Computing,2013,31 (10) :786-795.
  • 2Y Cui, H Dong, E Zhou. An early fire detection method based on smoke texture analysis and discrimination [ C . Image and Signal Processing, 2008. CISP'08. Congress on. IEEE, 2008-3:95- 99.
  • 3D Krstinid, D Stipanicev, T Jakov6evid. Histogram-based smoke segmentation in forest fire detection system[ J]. Information Tech- nology and Control, 2009,38 ( 3 ) : 237- 244.
  • 4B U Toreyin, A E Cetin. Wildfire detection using LMS based ac- tive learning [ C ]. //Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009 : 1461 - 1464.
  • 5姚太伟,王慧琴,胡燕.基于小波变换和稀疏光流法的火灾烟雾检测[J].计算机工程,2012,38(6):204-206. 被引量:17
  • 6C Stauffer, W E L Grimson. Adaptive background mixture models for real-time tracking[ C ]. Computer Vision and Pattern Recogni- tion, 1999. IEEE Computer Society Conference on. IEEE, 1999- 2.
  • 7T H Chen, et al. The smoke detection for early fire-alarming sys- tem base on video processing [ C ]. Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP'06. Interna- tional Conference on. IEEE, 2006.
  • 8H Maruta, et al. Smoke detection in open areas using its texture features and time series properties [ C ]. Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on. IEEE, 2009 : 1904-1908.

二级参考文献5

共引文献16

同被引文献60

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部