期刊文献+

BI-RADS分类在乳腺良恶性病变诊断中的应用价值 被引量:3

Effectiveness of Application of BI-RADS Classification in Diagnosis of Benign and Malignant Breast Lesions
下载PDF
导出
摘要 目的探讨乳腺影像报告和数据系统(BI-RADS)在乳腺良恶性病变诊断中的应用价值。方法对107例乳腺病变患者进行X线检查,运用BI-RADS分类系统对乳腺病变进行分类,并与病理结果进行对比,计算BI-RADS分类的准确度、敏感度、特异度、阳性预测值和阴性预测值。结果 107例患者中,恶性病变58例,良性病变49例。BI-RADS分类的准确度为70.1%(75/107),敏感度为98.3%(57/58),特异度为36.7%(18/49),总体阳性预测值为64.8%(57/88),0类、4类和5类的阳性预测值分别为46.7%(7/15)、43.9%(18/41)和100%(32/32),1类、2类和3类的阴性预测值分别为100%(4/4)、90.0%(9/10)和100%(5/5)。结论 X线诊断乳腺病变时,采用BI-RADS分类标准有利于提高乳腺癌的检出率,合理使用0类并结合临床检查能降低漏诊率。 Objective To study the effectiveness of application of the breast imaging reporting and data system (BI-RADS) in diagnosis of benign and malignant breast lesions. Methods Altogether 107 patients with breast lesions were scanned by X-Ray, classiifed according to BI-RADS and were further compared with pathologic ifndings. Moreover, the accuracy, sensitivity, speciifcity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Results Among 107 patients, there were 58 malignant and 49 benign lesions. The diagnostic accuracy, sensitivity and speciifcity of BI-RADS were 70.1%(75/107), 98.3%(57/58) and 36.7%(18/49). The general PPV of BI-RADS was 64.8%(57/88). The PPV of Category 0, 4, 5 were 46.7%(7/15), 43.9%(18/41) and 100%(32/32) respectively. The NPV of Category 1, 2 and 3 were 100%(4/4), 90.0%(9/10) and 100%(5/5) respectively. Conclusion BI-RADS classiifcation was useful in mammographic diagnosis of breast lesions. With combination of the features of Category 0 and the clinical examinations, the omission diagnostic rate could be reduced.
作者 王秀丽
出处 《中国医疗设备》 2015年第9期57-59,75,共4页 China Medical Devices
关键词 乳腺疾病 X线摄影 乳腺影像和数据报告系统 breast diseases X-ray radiography breast imaging reporting and data systems
  • 相关文献

参考文献11

  • 1Fowler EE,Sellers TA,Lu B,et al.Breast Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: automated measurement development for full field digital mammography[J] .MedPhys,2013,40(11): 113502.
  • 2Wiratkapun C,Wibulpolprasert B,Lertsithichai P.Breast cancer in patients initially assigned as BI-RADS category 3[J].J Med Assoe Thai,2006,89(6):834-839.
  • 3Liberman L,Abramson AF,Squires FB,et al.The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories[J].AJR Am J Roentgcnol,1998,171(1):35-40.
  • 4Orel SG,Kay N, Reynolds C,et al.BI-RADS categorization as a predictor of malignancy[J].Radiology,1999,211(3):845-850.
  • 5Lacquement MA,Mitchell D,Hollingsworth AB.Positive predictive value of the Breast Imaging Reporting and Data System[J].JAm Coil Surg,1999,189(1):34-40.
  • 6顾雅佳,吴斌,张帅,杨天锡.使用乳腺影像报告和数据系统诊断乳腺疾病的体会[J].中华放射学杂志,2004,38(9):931-936. 被引量:27
  • 7乳腺X线摄影检查和诊断共识[J].中华放射学杂志,2014,48(9):711-717. 被引量:29
  • 8刘万花,蒋博,张亚男,蒋燕,金爱萍,魏晓莹,陈炳为.不典型乳腺癌全数字化乳腺摄影X线表现规律探讨[J].中华放射学杂志,2008,42(6):573-576. 被引量:16
  • 9李嘉,滕皋军,张炽敏,姚小留,赵天慧,刘万花,魏晓莹,陈卫东,王玲.超声光散射成像与全数字化乳腺摄影对乳腺肿瘤诊断的对比研究[J].中华放射学杂志,2010,44(5):470-472. 被引量:19
  • 10Raza S,Goldkamp AL,Chikarmane SA,et al.US of breast masses categorized as BI-RADS 3,4 and 5:pictorial review of factors influencing clinical management[J].Racliographics, 2010,30(5):1199-1213.

二级参考文献45

共引文献95

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部