期刊文献+

Sb掺杂二氧化锡单片纳米带的气敏特性研究 被引量:5

Gas Sensing Properties of a Single Sb-doped SnO_2 Nanoribbon
下载PDF
导出
摘要 利用热蒸发法制备了纯净的SnO2纳米带及Sb掺杂SnO2纳米带。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和气敏测试仪器对其结构和性能进行了表征和测试。结果表明纳米带表面光滑,厚度约为50nm。纯净SnO2纳米带为理想的单晶结构,掺杂Sb后并没有改变二氧化锡的晶体结构和晶胞参数。使用单根Sb掺杂和纯净的SnO2纳米带制作成传感器并进行气敏性能测试,结果显示:Sb掺杂SnO2纳米带对乙二醇和丙酮的最佳响应温度为180℃,在100×10-6浓度下对乙二醇和丙酮的气敏响应分别为10倍和1.2倍;对乙醇的最佳响应温度为200℃,响应为2.6倍。在最佳响应温度,随乙二醇浓度的增加器件气敏响应增强,其响应时间随乙二醇浓度的增加而缩短,在50×10-6及100×10-6时,其响应时间分别为15s和14s。 Pure SnOz nanoribbons (SnOz NRs) and Sb-doped SnOz nanoribbons (Sb-SnOz NRs) were synthe- sized successfully by thermal evaporation. The structures and properties of the obtained SnOz NRs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM). It was found that nanoribbons had a smooth surface with thickness of about 50 nm Pure SnO2 NRs have an ideal single-crystal structure, and doping did not change the crystal structure and pa- rameters. A novel ethanediol sensor based on a single Sb-SnOz nanoribbon or SnOz nanoribbon was fabricated. The sensing properties of SnO2 nanoribbon (SnOz NR) and Strdoped SnOz nanoribbon(Sb-SnO2 NR)sensors were investi- gated. The results revealed that the optimum sensing temperature of the Sb-SnO2 NR was 180 ℃ ,and the correspon- ding S value were 10 and 1.2 to 100× 10-6 ethanediol and acetone gases, respectively. The optimum sensing tempera- ture of the Sb-SnOz NR sensor was 200 ℃, while S value was reduced to 2.6 when exposed to 100× 10-6 ethanol gas. The response of the Sb-SnOz NR sensor increased with the increase of concentration of ethanediol gas and the response time were 15 s and 14 s as its concentrations were 50× 10-6 and 100× 10-6 respectively at the optimum sensing tem- perature.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第14期87-90,共4页 Materials Reports
基金 国家自然科学基金(10764005 11164034) 教育部新世纪优秀人才项目(NCET-08-0926) 云南省自然科学基金(2010DC053 2013FA035) 云南省高端科技人才项目(2012HA007)
关键词 Sb掺杂SnO2 单片纳米带 气体传感器 乙二醇 Sb-doped SnOz, single nanoribbon, gas sensor, ethanediol
  • 相关文献

参考文献19

  • 1Wang G X,Park J S,Park M S,et al. Synthesis and high gas sensitivity of tin oxide nanotubes[J]. Sensors Actuators B, 2008,131(1) :313.
  • 2Ge L Q,Ji J Y,Tian T,et al. Fabrication of the hollow SnO2 nanopartieles contained spheres as extreme ultraviolet (EUV) target[J]. Colloids Surf A: Physicochem Eng As- pects,2010,358(1) :88.
  • 3Ding J J,Wang M Q, Yan X B, et al. Mierostructures, sur- face states and field emission mechanism of graphene-tin/tin oxide hybrids[J]. J Colloid Interface Sci, 2013,395 (1) : 40.
  • 4Tadanaga K, Fujii T, Matsuda A, et al. Micropatterning of ShOe thin films using hydrophobic-hydrophilic patterned surface [J]. Ceram Int,2004,30(7) : 1815.
  • 5Haridas D, Gupta V. Study of collective efforts of catalytic activity and photoactivation to enhance room temperature re- sponse of SnO2 thin film sensor for methane[J]. Sensors Ac- tuators B: Chem, 2013,182 : 741.
  • 6Wagh M S, Patil L A, Amalnerkarb D P. Surface cupricated SnO2-ZnO thick films as a HE S gas sensor [J]. Mater Chem Phys,2004,84(2) :228.
  • 7Maffeis T G G, Owen G T, Malagu C, et al. Direct evidence of the dependence of surface state density on the size of SnO2 nanoparticles observed by scanning tunnelling spec- troscopy [J]. Surf Sci,2004,550(1) :21.
  • 8Lou Z,Wang L, Fei T, et al. Enhanced ethanol sensing pro- perties of NiO-doped SnOz poyhedra [J]. New J Chem, 2012,36(4) : 1003.
  • 9梅军鹏,张覃轶,韩雪亮.Mn掺杂纳米SnO_2的气敏性能研究[J].传感器与微系统,2013,32(1):76-78. 被引量:5
  • 10Neria G, et al. Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion[J]. Sensors Ac- tuators B: Chem, 2006,117(1) : 196.

二级参考文献12

  • 1曾令可,税安泽,刘平安,王慧,盛文彦.离子掺杂对纳米二氧化钛粒径的影响[J].人工晶体学报,2007,36(2):428-432. 被引量:12
  • 2Harnaguchi T,Yabuki N,Uno M. Synthesis and H2 gas sensing properties of tin oxide nanohole arrays with various electrodes[J].Sensors and Actuators B:Chemical,2006.852-856.
  • 3Sberveglieri G,Baratto C,Comini E. Recent progress on gas sensors based on semiconducting thin films[A].Western Australia:IEEE,1999.65-72.
  • 4Sun J Q,Wang J S,Wu X C. Novel method for high-yield synthesis of rutile SnO2 nanorods by oriented aggregation[J].Crystal Growth and Design,2006.1584-1587.
  • 5Pan J H,Chai S Y,Lee C. Controlled formation of highly crystallized cubic and hexagonal mesoporous SnO2 thin films[J].Journal of Physical Chemistry C,2007.5582-5587.
  • 6Lou Z,Wang L,Fei T. Enhanced ethanol sensing properties of NiO-doped SnO2 polyhedra[J].New Journal of Chemistry,2012,(04):1003-1007.
  • 7Mishra R K,Sahay P P. Synthesis,characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles[J].Ceramics International,2012.2295-2304.
  • 8Neri G,Bonavita A,Micali G. Ethanol sensors based on Ptdoped tin oxide nanopowders synthesised by gel-combustion[J].Sensors and Actuators B:Chemical,2006.196-204.
  • 9Zhang H,Li Z,Liu L. Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers[J].Sensors and Actuators B:Chemical,2010.111-115.
  • 10Shimizu Y,Maekawa T,Nakamura Y. Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors[J].Sensors and Actuators B:Chemical,1998.163-168.

共引文献4

同被引文献205

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部