期刊文献+

热解温度对锂离子电池Si/C复合负极材料性能的影响 被引量:1

Influence of Thermal Decomposition Temperature on Properties of Si/C Composites for Lithium-ion Batteries
下载PDF
导出
摘要 以酚醛树脂为碳源,采用球磨-热解工艺制备了一系列Si/C复合负极材料,通过XRD、SEM、恒流充放电等测试方法,研究了热解温度对复合材料结构、形貌和电化学性能的影响。结果表明,前驱物经不同的热分解温度得到的复合负极材料,其衍射峰基本与原料硅和石墨的衍射峰相符。随着热分解温度的升高,硅颗粒的分散性得到改善,并与石墨及无定形碳层交错起来形成微孔结构,直接对复合材料的电化学性能产生较大的影响。当热分解温度为1000℃时,合成的Si/C复合负极材料综合电化学性能较好,首次充放电效率可以达到73.1%,以100mA/g放电,循环100周后容量保持率为89.7%,以200mA/g放电,循环100周后容量保持率仍可以达到87.8%。 A series of Si/C composite cathode materials were prepared by ball milling and thermal decomposi- tion process with phenolic resin as carbon source. Influence of thermal decomposition temperature on structures,mor- phology and electrochemical properties of the composites were studied through XRD, SEM and constant current charge discharge test method. The results show that the composite cathode materials were obtained by precursors du- ring different thermal decomposition temperature,whose diffraction peaks are similar to diffraction peaks of raw mate- rial of silicon and graphite. Increasing the heat decomposition temperature,the dispersion of the silica particles was im- proved, and they were staggered to form a porous structure together with graphite and amorphous carbon layer, which directly produce great influence on electrochemical properties of materials. When the thermal decomposition tempera- ture is 1000 ℃, the comprehensive electrochemical properties of Si/C composite cathode material synthesis is better. The first charge discharge efficiency can reach 73. 1%. After 100 cycles, the capacity retention rate is 89. 7% at 100 mA/g,87. 8% at 200 mA/g.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第18期9-12,共4页 Materials Reports
基金 广东省自然科学基金(2014A030308015)
关键词 锂离子电池 Si/C复合负极材料 热解温度 电化学性能 lithium-ion batteries, Si/C composite anode material, thermal decomposition temperature, electro-chemical property
  • 相关文献

参考文献9

  • 1Fuchsbichler B, Stangl C, Kren H, et al. High capacity graphite-silicon composite anode material for lithium-ion batteries[J]. J Power Sources, 2011,196: 2889.
  • 2Moni Kanchan Datta, Prashant N Kumta. In situ electrochemical synthesis of lithia ted silicon-carbon based composites anode materials for lithium ion batteries[J]. J Power Sources, 2009, 194:1043.
  • 3Seung Sik Hwang, Chang Gi Cho- Hansu Kim. Polymer mi-crosphere embedded Si/ graphite composite anode material for lithium rechargeable battery[J]. Electrochim Acta, 2010, 55:3236.
  • 4Gu Peng , Cai Rui, Zhou Yingkevet al. Si/C composite lith-ium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyroly-sis[J]. Electrochim Acta, 2010,55: 3876.
  • 5Wang Dingsheng,Gao Mingxia,Pan Honggevet al. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization[J]. J Alloys Compd,2014, 604 :130.
  • 6Su Mingru , Wang Zhixing , Guo H uaj un , et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol,2013,24:921.
  • 7Si Qin, Hanai K, Imanishi N, et al. Highly reversible car-bon-nano-silicon composite anodes for lithium rechargeable batteries[J]. J Power Sources, 2009 , 189: 761.
  • 8王元瑞,强国俊,吕贤浩,潘英剑.锂离子电池用酚醛树脂热解碳负极材料的研究进展[J].化工新型材料,2012,40(12):9-11. 被引量:2
  • 9李敏,侯贤华,王洁,张苗,胡社军,刘祥.以石墨为母体的硅碳核壳复合负极材料的制备及性能研究[J].功能材料,2013,44(19):2828-2832. 被引量:9

二级参考文献43

  • 1路密,尹鸽平,史鹏飞.锂离子电池负极石墨材料的修饰与改性[J].电池,2001,31(4):195-197. 被引量:26
  • 2周德凤,李晓路,李连贵,王荣顺.磷化酚醛树脂热解炭材料的电化学性能[J].分子科学学报,2005,21(5):24-28. 被引量:4
  • 3万传云,吴敏昌,李辉,李念民,张殿浩.壳核结构改性天然石墨在电池中的应用[J].电池工业,2006,11(3):151-153. 被引量:6
  • 4Li Xiaolin, Meduri P, Chen Xilin, et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion batterries anodes[J].Journal of Materials Chemistry, 2012, 22: 11014-11017.
  • 5YangJuan, Zhou Xiangyang, LiJ ie , et al. Study of nanoporous hard carbons as anode materials for lithium-ion batteries[J]. Material Chemistry Physics, 2012, 135: 445-450.
  • 6Zhao Liwei , Han S H, Okada S, et al. Thermal stability of silicon negative electrode for Li-ion batteries[J].J ournal of Power Sources, 2012, 203: 78-83.
  • 7Li Xifei, Zhong Yu,Cai Mei, et al. Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hy- brid anodes in rechargeable lithium ion batteries[J]. Electrochimica Acta, 2013, 89:387-393.
  • 8Fan Shufen , Sun Ting , Ruo Xianhong , et al. Cooperative enhancement of capacities in nanostructured Sn/Sb/ carbon nanotube network nanocomposite as anode for lithium ion batteries[J].Journal of Power Sources, 2012, 201: 288-293.
  • 9Wen Zhenhai vLu Ganhua,Mao Shun, et al. Silicon nanotube anode for lithium-ion batteries[J]. Electrochemistry Communication, 2013, 29: 67-70.
  • 10WU Hui,Cui Yi. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7 :414-429.

共引文献9

同被引文献12

  • 1Hao Hongying, Shao Ziqiang. The electrochemical performance of carboxymethyl cellulose with different DS as a binding material in lithium batteries[J]. Adv Mater, 2012,499 : 114.
  • 2Bridel J S, Azais T, Morcrette M, et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries [J]. Chem Mater, 2010,22(3) : 1229.
  • 3Yamaguchi H, Nakanishi S, Iba H,el al. Amorphous polymeric ano- de materials from poly(acrylic acid) and bismuth oxide for lithium ion batteries[J]. Kobunshi Ronbunshu, 2013,70 (3) : 87.
  • 4Prosini P P, et al. A high voltage cathode prepared by using polyvi- nyl acetate as a binder[J]. Solid State Ionics. 2015,274 : 88.
  • 5Guy D, Lestriez B, Guyomard D. New composite electrode architec- lure and improved battery performance from the smart use of poly- mers and their properties[J]. Adv Mater,2004,16(6) :553.
  • 6AI-Maghrabi M A, Thorne J S, Sanderson R J, et al. A combinato- rial study of the Sn-Si-C system for Li ion battery applications [J]. J Electrochem Soc, 2012,159 (6) : A711.
  • 7Zhang S, Xu K, Jow T R. Evaluation on a wate:based binder for the graphite anode of Li ion batteries[J]. J Power Sources, 2008, 138(2):226.
  • 8Zhang L X, et al. Biomass-derived materials for electrochemical energy storages[J].Prog Polym Sci, 2015,43: 136.
  • 9Wang J, Yao Z, Monroe C W, et al. Carbonyl-cyclodextrinas: A no- vel binder for sulfur composite cathodes in rechargeablelithium bat teries[J]. Adv Funct Mater, 2013,23 : 1194.
  • 10Igor K, Bogdan Z, Alexandre M, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011,334(6052) : 75.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部