期刊文献+

互联网社群图像标签排序研究进展

Advances in Tag Ranking for Internet Social Images
下载PDF
导出
摘要 互联网社群图像标签排序是目前计算机视觉、机器学习等领域最热门的课题之一。图像标签序列的合理性直接影响到图像检索等应用的效果。目前图像标签排序的方法多种多样,根据标签排序方法的不同将其划分为基于语义相关度与基于视觉显著性的标签排序,着重介绍了两类方法的典型标签排序方法,分析其各自的优缺点。最后就图像标签排序的评价方法以及发展趋势做了简单的论述。 Tag ranking for internet social images is one of the most popular topics in the computer vision and machine learning. The effect of image retrieval and other applications is directly affected by the reasonableness of the order of image tag. Currently, the existing methods on tag ranking are various. This paper divided them into relevance-based tag ranking and saliency-based tag ranking. This paper highlighted two typical image tag ranking ways and analyzes their advantages and disadvantages respectively. Finally, we discussed the evaluation methods and trends of image tag ranking simply.
出处 《计算机科学》 CSCD 北大核心 2015年第8期22-27,35,共7页 Computer Science
基金 国家自然科学基金(61372148 61271369 41101111) 北京市教育委员会科技发展计划面上项目(SQKM201411417004) 北京联合大学人才强校计划人才资助项目(BPHR2014A04 BPHR2014E02) 北京市属高等学校创新团队建设与教师职业发展计划项目(CIT&TCD20130513 IDHT20140508)资助
关键词 标签排序 相关性 显著性 Tag ranking,Relevance, Saliency
  • 相关文献

参考文献40

  • 1Tang J,Yan S, Hong R, et al. Inferring semantic concepts from community-contributed images and noisy tags[C]//Proceedings of the 17th ACM international conference on Multimedia. ACM, 2009 : 223-232.
  • 2Xiang Y,Zhou X,Chua T S,et al. A revisit of generative model for automatic image annotation using rnarkov random fields [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). IEEE, 2009 : 1153-1160.
  • 3Zhang S, Tian Q, Hua G, et al. Descriptive visual words and vi- sual phrases for image applications[C]//Proceedings of the 17th ACM international conference on Multimedia. ACM, 2009 : 75-84.
  • 4Xiang Y, Zhou X, Liu Z, et al. Semantic context modeling with maximal margin conditional random fields for automatic image annotation[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2010: 3368-3375.
  • 5Ames M, Naaman NL Why we tag:motivations for annotation in mobile and online media[C]//Proceedings of the SIGCHI Con- ference on Human Factors in Computing Systems. ACM, 2007: 971-980.
  • 6Kennedy L S, Chang S F, Kozintsev I V. To search or to label ? : predicting the performance of search-based automatic image classifiers[C] // Proceedings of 8th ACM International Work- shop on Multimedia Information Retrieval. ACM,2006:249-258.
  • 7Liu D,Hua X S,Yang L,et al. Tag ranking [C]//Proceedings of 18th International Conference on World Wide Web. ACM, 2009: 351-360.
  • 8Li X, Shock C G M, Worring M. Learning tag relevance by neighbor voting for social image retrieval [C] // Proceedings of the 1st ACM International Conference on Multimedia Informa- tion Retrieval. ACM, 2008:180-187.
  • 9Feng S,Xu D, Yang X. Attention-driven salient edge(s) and re- gion(s) extraction with application to CBIR[J]. Signal Proces- sing,2010,90(1) : 1-15.
  • 10Guillaumin M, Verbeek J, Schmid C. Multimodal semi-super- vised learning for image classification[C] // 2010 IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010 z 902-909.

二级参考文献18

  • 1Ames M, Naaman M. Why we tag: motivations for annotation in mobile and online media [ A ]. Proceedings of SIGCHI Conference on Human Factors in Computing System [ C ]. San Jose, USA : ACM ,2007 : 971-980.
  • 2Wang Meng, Hua Xiansheng, Hong Riehang, et al. Unified video annotation via multi-graph learning[ J]. IEEE Transactions on Circuit System and VideoTechnology ,2009,19 ( 5 ) :733-746.
  • 3Kennedy L S, Chang S F, Kozintsev I V. To search or to label?: predicting the performance of search-based automatic image classifiers [ A ]. Proceedings of ACM International Workshop on Multimedia Information Retrieval[ C ]. Santa Barbara, USA: ACM, 2006:249 -258.
  • 4Liu Dong, Hua Xiansheng, Yang Linjun, et al. Tag ranking [ A ]. Proceedings of International Conference on Worm Wide Web [ C ]. Madrid, Spain : ACM,2009 : 351-360.
  • 5Li Xirong, Snoek C G M, Worring M. Learning tag relevance by neighbor voting for social image retrieval [ A]. Proceedings of ACM International Conference on Multimedia Information Retrieval [ C ]. Vancouver, Canada: ACM, 2008 : 180-187.
  • 6Zhuang Jinfeng, Hoi S C H. A two-view learning approach for image tag ranking [ A ]. Proceedings of ACM International Conference on Web Search and Data Mining[ C ]. Hong Kong, China : ACM, 2011 : 625 -634.
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Maehine Intelli- gence, 1998,20 ( I 1 ) : 1254-1259.
  • 8Frintrop S,Klodt M,Rome E. A real-time visual attention system using integral images [ A ]. Proceedings of International Conference on Computer Vision Systems [ C ]. Bielefeld, Germany: Applied Computer Science Group ,2007.
  • 9Ma Yufei, Zhang Hongjiang. Contrast-based image attention analysis by using fuzzy growing [ A ]. Proceedings of ACM International Conference on Multimedia [ C ]. Berkeley, USA : ACM, 2003 : 374 -381.
  • 10Chua T S, Tang Jinhui, Hong Richang, et al. NUS- WIDE:A real-world web image database from NationalUniversity of Singapore [ A ]. Proceedings of ACM In- ternational Conference on Image and Video Retrieval [ C ]. Santorini, Greece: ACM,2009.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部