期刊文献+

基于改进符号压力函数的变分水平集图像分割算法 被引量:5

Variational Level Set Method for Image Segmentation Based on Improved Signed Pressure Force Function
下载PDF
导出
摘要 为了更好地解决含有弱边界、灰度不均匀的图像在分割时出现的轮廓线错误移动而导致分割结果错误的问题,结合图像的统计信息,构造出一种新的符号压力(SPF)函数,提出了一种基于改进的压力符号函数的变分水平集图像分割算法。首先,利用新的压力符号函数代替边缘函数,构造了新的活动轮廓模型;其次,该算法保持了测地线活动轮廓(GAC)模型和chan-vese(C-V)模型的优点,使水平集函数演化到目标的边界上;最后,对一些弱边界、灰度不均匀的图像进行仿真实验,结果表明提出的算法能够精准地分割目标,并且具有一定的抗噪性。 In order to handle the problem of inaccurate moving of contour which results in the wrong segmentation of the image with weak boundary and intensity inhomogeneity, a variational level set method for image segmentation based on improved signed pressure force function combined with the statistical information of image was proposed in this paper. Firstly,a new model of active contours is constructed by using a new pressure sign function to replace the edge function. Secondly, the algorithm maintains the merits of geodesic active contour (GAC) model and chan-vese (C-V) model and makes the level set function stop evolution in the boundary of the target image. Finally, simulation experi- ments were implemented on images with poor boundaries and intensity inhomogeneity. Experimental results show the orooosed model has high computational efficiency and accuracy. Furthermore, it is robust to noise.
出处 《计算机科学》 CSCD 北大核心 2015年第8期40-43,共4页 Computer Science
基金 教育部"111"引智计划(B12018) 国家自然科学基金(11202084)资助
关键词 活动轮廓模型 水平集 压力符号函数 统计信息 Active contour model,Level set,Signed pressure force,Statistical information
  • 相关文献

参考文献13

  • 1Kass M, Witkin A, Terzopoulos D. Snakes= active contour mo- dels[J]. International Journal Computer Vision, 1987,1 (4) : 321- 331.
  • 2Caselles V, Kimmel R,Sapiro G. Geodesic Active Contours[J]. International Journal of Computer Vision, 1997,22( 1 ) : 61-79.
  • 3Chan T F,Vese I. A. Active Contours without Edges[J]. IEEE Trans on Image Processing, 2001,10(2) : 266-277.
  • 4Yuan Y, He C J. Variational level set methods for image seg- mentation based on both Lz and Sobolev gradients[J]. Nonlinear Analysis Real World Applications, 2012,13 : 969-966.
  • 5Liu L H,Zeng L,Shen K,et al. Exploiting local intensity infor- mation in Chan Vese model for noisy image segmentation[J]. Signal Processing, 2013,93 : 2709-2721.
  • 6Wang L, He L, Mishra A, et al. Active contours driven by local Gaussian distribution fitting energy[J]. Signal Processing, 2009, 89:2435-2447.
  • 7Li D Y,Li W F,I.iao Q M. Active contours driven by local and global probability distributions[J]. Journal of Visual Communi- cation and Image Representation, 2013,24 : 533-533.
  • 8Osher S, Sethian J. Fronts propagating with curvature-depend- ent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal Computer,Physics, 1988,79( 1 ) : 12-49.
  • 9Li C M, Kao C Y,Gore J. C, et al. Implicit active contours driven by local binary fitting energy[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion. Washington 13(2, USA, 2007,1 : 1-7.
  • 10Wang X F, Huang D S, Xu H. An Efficient Local Chan-Vese Model for Image Segmentation[J]. Pattern Recognition, 2010, 43(3) :603-618.

同被引文献37

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部