期刊文献+

计算机免疫危险理论中危险信号的提取方法研究 被引量:5

Research of Danger Signal Extraction Based on Changes in Danger Theory
下载PDF
导出
摘要 危险理论是人工免疫系统的一个重要研究分支,它从危险的角度出发对免疫系统的工作原理进行了新的阐述,目前已广泛应用于入侵检测、机器学习和数据挖掘等领域。建立危险理论模型的首要问题是如何自适应地提取危险信号。从变化导致危险这一思想出发,建立了一套基于变化特征的危险信号自适应提取模型;针对不同类型系统资源的特点,设计了基于值变化和特征变化的两种危险信号提取方法。同时,通过实验验证了该模型在不依赖先验知识的情况下,能够自适应地提取危险信号。 Danger theory is an important research branch in artificial immune system. It starts from the perspective of danger to describe the working principle of immune system in a new way, which has been widely used in intrusion detec- tion, machine learning, data mining and so on. The primary issue of establishing a danger theory model is how to extract danger signals adaptively. This paper started from the main idea of changes leading to danger, and established an adaptive danger signal extraction model based on finding changes. According to the characteristics of different types of system resources, it designed two danger signal extraction methods:value changes and feature changes. The experiment verifies that this model can adaptively extract danger signals without relying on prior knowledge.
作者 杨超 李涛
出处 《计算机科学》 CSCD 北大核心 2015年第8期170-174,共5页 Computer Science
基金 国家自然科学基金项目(61170306) 湖北省自然科学基金面上项目(2014CFB536) 湖北省教育厅人文社科重点项目(2012D111)资助
关键词 人工免疫系统 危险理论 危险信号 变化提取 Artificial immune system, Danger theory, Danger signal, Change extraction
  • 相关文献

参考文献1

二级参考文献20

  • 1Lambin E F, Ehrlich D. Land-cover changes in sub-saharan africa ( 1982-1991 ): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale [ J ]. Remote Sensing of Environment, 1997,61 ( 2 ): 181-200
  • 2Sung-Ryong Ha, Byung-Woon Ahn, Sang-Young Park. Change detection of land-cover from multi-temporal KOMPSAT-1 EOC imageries[ J]. Korean Journal of Remote Sensing, 2002,18( 1 ) :13-23
  • 3Johnson R A, Whchern D W. Applied multivariate statistical analysis[M]. Prentice Hall, 1998
  • 4Meer V F, Bakker W. CCSM: Cross correlogram spectral matching[J]. Int J Remote Sensing, 1997,18(5) :1197-1201
  • 5Meer V F. Spectral curve shape matching with a continuum removed CCSM algorithm[J]. Int J Remote Sensing,2000,21(16) :3179-3185
  • 6Chen Jin, Jonsson P, Masayuki Tamura, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[ J]. Remote Sensing of Environment, 2004,91:332-344
  • 7Bruzaone L, Serpico S B. An iterative technique for the detection of landcover transitions in multitemporal remotesensing images[ J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35:858-867
  • 8Tucker C J, Townshend J R G. African land-cover classification using satellite data[ J ]. Science, 1985,227 (2): 369-375
  • 9Townshend J R G. Global data sets for land applications from the advanced very high resolution radiometer : an introduction[ J ]. Int J Remote Sensing, 1994,15 ( 17 ) :3319-3332
  • 10Cihlar J, Ly H, Xiao Q. Land cover classification with AVHRR multichannel composites in northern environments [ J ].Remote Sensing of Environment, 1996,58:36-51

共引文献35

同被引文献29

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部