期刊文献+

基于自适应阈值Kirsch-LBP纹理特征的均值漂移目标跟踪算法 被引量:3

Mean Shift Object Tracking Algorithm of Adaptive Threshold Kirsch-LBP Texture Features
下载PDF
导出
摘要 针对以颜色特征建立概率模型的Mean Shift目标跟踪算法在光线变化时存在的缺陷,提出了一种融合改进型纹理特征与HSV颜色特征的Mean Shift目标跟踪算法。首先,设计一种具有抗光性能的自适应阈值Kirsch-LBP纹理特征算子,该算子利用Kirsch算子的8个方向模板所求的差值,并采用LBP模板均值作为自适应阈值,再按照旋转不变LBP原理提取局部纹理特征;其次,利用不同特征相似性系数间的关系作为加权准则来构建新的权重;最后,将其嵌入到Mean Shift算法中以实现目标跟踪。对比实验结果表明,本算法在光线变化场景中也具有良好的目标跟踪特性,广泛适用于光照变化和姿态变化等复杂场景下的目标跟踪领域。 For improving the performance of the mean shift tracking algorithm based on single color feature, which is adopted to establish the target model when the light changes, a new mean shift object tracking algorithm combining a Kirsch-LBP texture feature with HSV color feature was presented. Firstly, the paper presented a novel adaptive thres- hold Kirsch-LBP feature description operator with light resistance, which uses eight direction difference of the Kirsch operator, uses the LBP template average as an adaptive threshold,and then according to the rotation invariant principle of LBP extracts local texture feature. Secondly, it used the relationship between similarity coefficient of different features as the weighted criteria to construct the new weight. Finally, it was embedded into the mean shift algorithm to realize target tracking. Experimental results show that the algorithm can improve the accuracy of target tracking effectively in the scene of light changing,and improves the performance of traditional mean shift object tracking algorithm.
出处 《计算机科学》 CSCD 北大核心 2015年第8期314-318,共5页 Computer Science
基金 科技部科技创新基金项目(10C26215113031) 重庆市科技攻关项目(cstc2012ggyyjs40010)资助
关键词 均值漂移 目标跟踪 纹理特征 颜色特征 加权融合 Mean shift, Target tracking, Texture feature, Color feature, Weight fusion
  • 相关文献

参考文献13

二级参考文献86

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4齐苏敏,黄贤武,伊怀峰.基于各向异性核函数的均值漂移跟踪算法[J].电子与信息学报,2007,29(3):686-689. 被引量:6
  • 5Cheng Y. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 6Comaniciu D, Ramesh V, and Meer P. Real-time tracking of non-rigid objects using mean shift [C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA. 2000. II: 142-149.
  • 7Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN~ USA, 2007: 1-6.
  • 8Yao An-bang, Wang Gui-jin, Lin Xing-gang, and Wang Hao. Kernel based articulated object tracking with scale adaptation and model update [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008: 945-948.
  • 9Chen Xiao-peng, Zhou You-xue, Huang Xiao-san, and Li Cheng-rong. Adaptive bandwidth mean shift object tracking [C]. IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008: 1011-1017.
  • 10Jiang Zhuo-lin, Li Shao-fa, Jia Xi-ping, and Zhu Hong-li. An improved mean shift tracking method based on nonparametric clustering and adaptive bandwidth [C]. Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, China, 2008: 12-15.

共引文献135

同被引文献33

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部