期刊文献+

面向大数据系统的检测器快速筛选算法 被引量:1

Fast Detector Screening Algorithm for Big Data System
下载PDF
导出
摘要 筛选成熟检测器是决定人工免疫系统性能和效率的关键因素,在大数据环境下由于初始检测器的数量极其庞大,会造成现有检测器筛选算法时间开销过大。针对该问题,提出一种新的海量初始检测器快速筛选算法。设计海量初始检测器的分布存储模式,利用Map/Reduce模型,给出混合式初始检测器快速筛选架构、海量初始检测器分区检查策略和成熟检测器集优化策略,以提高筛选初始检测器的效率,优化成熟检测器。在Hadoop集群中实现面向大数据系统检测器快速筛选算法原型系统,使用CERT synthethic sendmail data数据集进行测试与分析,结果表明,与传统算法相比,该算法能减少58.87%的时间开销,并在初始检测器数量不断增加时保持时间开销的稳定。 The detector screening algorithm is important for the performance and efficiency of Artificial Immune System (AIS). But the time overhead of current detector generation algorithm is too big due to the large number of initial detector in the big data system. In this paper, the new distributed initial detector storage strategy is designed to provide the basis for improving the massive initial detector selection efficiency. The new fast detector screening algorithm for the big data system is given by analyzing the different character of map and reduce stage in Map/Reduce model, and it is used to improve the initial detector selection efficiency and optimize the mature detector set. It includes hybrid initial detector selection architecture, massive initial detection partition inspection algorithm and mature detector set optimization algorithm. The fast detector generation algorithm prototype for big data system is realized in Hadoop system. CERT synthethic sendmail data set is used to evaluate and compared with the current detector screening algorithm. The result shows that the 58.87% time overhead is reduced, and time overhead can be maintained stability with the number of initial detector increasing.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期45-50,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61300228) 浙江省自然科学基金资助项目(LY13F020012) 江苏省科技支撑计划基金资助项目(BE2013103) 深圳市科技基金资助项目(JCYJ20130401095947222)
关键词 检测器生成算法 大数据系统 人工免疫系统 Map/Reduce模型 detector generation algorithm big data system Artificial Immune System(AIS) Map/Reduce model
  • 相关文献

参考文献16

  • 1Forrest S, Helman P. An Immunological Approach to Change Detection: Algorithms, Analysis, and Implica- tions [ C ]//Proceedings of IEEE Symposium on Computer Security and Privacy. Washington D. C. ,USA : IEEE Press, 1996 : 192-211.
  • 2Forrest S, Perelson A S, Allen S, et al. Self-nonself Discrimination in a Computer [ C ]//Proceedings of IEEE Symposium on Research in Security and Privacy. Washington D. C. , USA : IEEE Press, 1994 : 202-212.
  • 3杨东勇,陈晋音.基于多种群遗传算法的检测器生成算法研究[J].自动化学报,2009,35(4):425-432. 被引量:15
  • 4de Castro L N, von Zuben F J. The Clonal Selection Algorithm with Engineering Applications [ C ]// Proceedings of GECCO' 00. San Francisco, USA: Morgan Kaufmann Publishers, 2000 : 36-37.
  • 5de Castro L N,von Zuben F J. Learning and Optimization Using the Clonal Selection Principle [ J 1- IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
  • 6Kim J ,Bentley P J. Towards an Artificial Immune System for Network Intrusion Detection:An Investigation of Clonal Selection with a Negative Selection Operator [ C 1// Proceedings of Congress on Evolutionary Computation. Piscatawav, USA: IEEE Press,2001 : 1244-1252.
  • 7张立宁,公茂果,焦李成,马文萍.抗独特型克隆选择算法[J].软件学报,2009,20(5):1269-1281. 被引量:10
  • 8Agrawal R, Srikant R. Fast Algorithms for Mining Associ- ation Rules [ C l//Proceedings of the 20th VLDB Confe- rence. Santiago,USA :Morgan Kaufmann, 1994:487-499.
  • 9Luo Wenjian, Zhang Zeming, Wang Xufa. A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule [ C ://Proceedings of the 5th International Conference on Artificial Immune Systems. Oeiras, Portugal: : s. n. ] ,2006:229-243.
  • 10Jiang Hua,Wang Xin,Fan Xiaofeng. Research on Linear Time Detector Generating Algorithm Based on Nega- tive Selection Model [ C ]//Proceedings of CCDC ' 09. Washingtola D. C. , US A : IEEE Press, 2009 : 3058-3061.

二级参考文献94

  • 1罗文坚,曹先彬,王煦法.检测器自适应生成算法研究[J].自动化学报,2005,31(6):907-916. 被引量:17
  • 2LI Tao.An immune based dynamic intrusion detection model[J].Chinese Science Bulletin,2005,50(22):2650-2657. 被引量:17
  • 3GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 4Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 5Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 6Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 7Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 8Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 9Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 10Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].

共引文献709

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部