摘要
在前向安全签名方案中,即使当前的秘钥泄露,也能保证先前生成的签名具有不可伪造性。针对已有格上基于前向安全签名方案签名长度过长的不足,利用Lyubashevsky无陷门技术,提出一个高效的前向安全签名方案。在随机预言模型下,基于小整数解困难假设证明了其能抵抗适应性选择消息攻击,无需陷门函数和高斯抽样函数。性能分析结果表明,与现有方案相比,该方案具有前向安全的特性,计算效率更高。
In a forward secure signature scheme,the scheme can guarantee the unforgeability of the foregoing signatures even if the current signing secret key is revealed. Aiming at the efficiency weakness that exists in the previous forward secure signature schemes from lattices, using the technique (without trapdoors) of Lyubashevsky, an efficient identity- based forward secure signature scheme from lattices is proposed. In the random oracle model, the scheme is existentially unforgeable against adaptive chosen message attacks under the Small Integer Solution (SIS) problem. Performance analysis results show that, compared with other existing schemes, the scheme has the characters of forward secure and can provide better efficiency.
出处
《计算机工程》
CAS
CSCD
北大核心
2015年第9期155-158,共4页
Computer Engineering
基金
陕西省自然科学基金资助项目(2012JM8018
2014JM2-6099)
国家统计科学研究计划基金资助项目(2013LY052)
陕西省教育厅科学计划基金资助项目(2010JK553
2013JK1193)
西安财经学院基金资助项目(13XCK01)
关键词
基于身份签名
前向安全
格
无陷门
小整数解问题
后量子密码
identity-based signature
forward security
lattice
without trapdoors
Small Integer Solution ( SIS ) problem
post-quantum cryptography