期刊文献+

格上基于身份的前向安全签名方案 被引量:4

Identity-based Forward Secure Signature Scheme from Lattices
下载PDF
导出
摘要 在前向安全签名方案中,即使当前的秘钥泄露,也能保证先前生成的签名具有不可伪造性。针对已有格上基于前向安全签名方案签名长度过长的不足,利用Lyubashevsky无陷门技术,提出一个高效的前向安全签名方案。在随机预言模型下,基于小整数解困难假设证明了其能抵抗适应性选择消息攻击,无需陷门函数和高斯抽样函数。性能分析结果表明,与现有方案相比,该方案具有前向安全的特性,计算效率更高。 In a forward secure signature scheme,the scheme can guarantee the unforgeability of the foregoing signatures even if the current signing secret key is revealed. Aiming at the efficiency weakness that exists in the previous forward secure signature schemes from lattices, using the technique (without trapdoors) of Lyubashevsky, an efficient identity- based forward secure signature scheme from lattices is proposed. In the random oracle model, the scheme is existentially unforgeable against adaptive chosen message attacks under the Small Integer Solution (SIS) problem. Performance analysis results show that, compared with other existing schemes, the scheme has the characters of forward secure and can provide better efficiency.
作者 向新银
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期155-158,共4页 Computer Engineering
基金 陕西省自然科学基金资助项目(2012JM8018 2014JM2-6099) 国家统计科学研究计划基金资助项目(2013LY052) 陕西省教育厅科学计划基金资助项目(2010JK553 2013JK1193) 西安财经学院基金资助项目(13XCK01)
关键词 基于身份签名 前向安全 无陷门 小整数解问题 后量子密码 identity-based signature forward security lattice without trapdoors Small Integer Solution ( SIS ) problem post-quantum cryptography
  • 相关文献

参考文献13

  • 1Shamir A. Identity-based Cryptosystems and SignatureSchemes[ C]//Proceedings of Advances in Cryptology- Crypto' 84. Santa Barbara, USA : Springer-Verlag, 1984 : 47-53.
  • 2Boneh D, Franklin M. Identity Based Encryption from the Weil Pairing [ C ]//Proceedings of Advances in Cryptology-CRYPTO ' 01. Santa Barbara, USA : Springer- Verlag, 2001 : 213 -229.
  • 3Yu Jia, Kong Fanyu, Cheng Xiangguo, et al. One Forward-secure Signature Scheme Using Bilinear Maps and Its Applications [ J ]. Information Science, 2014, 279( 1 ) :60-76.
  • 4Yu Jia,Kong Fanyu, Cheng Xiangguo, et al. Erratum to the Paper: Forward-secure Identity-based Public-key Encryption without Random Oracles [ J ]. Fundamenta Informaticae, 2012,114 ( 1 ) : 103.
  • 5Anderson R. Two Remarks on Public Key Cryp- tology [ EB/OL ]. (2011-11-12 ). http ://www. cl. cam. ac. uk/techreports/UCAM-CL-TR-549, pdf.
  • 6Bellare M, Miner S. A Forward-secure Digital Signature Scheme [ C ]//Proceedings of the 19th Annual International Cryptology Conference. Santa Barbara, USA: Springer- Verlag, 1999:431-448.
  • 7Liu Yali, Yin Xinchun, Qiu Liang. ID-based Forward Secure Signature Scheme from the Bilinear Pairings [ C ]//Proceedings of International Symposium on Electronic Commerce and Security. Guangzhou, China: [ s. n. ] ,2008 : 179-183.
  • 8Ajtai M. Generating Hard Instances of Lattice Problems[ C ]//Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. Pennsylvania, USA: [ s. n. ] ,1996:99-108. 2014,1 (1) :13-27.
  • 9Lyubashevsky V. Lattice Signatures Without Trap- doors [ C ]//Proceedings of the 31 st Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cambridge, UK: [ s. n. ], 2012:738-755.
  • 10RiJckert M. Strongly Unforgeable Signatures and Hierarchical Identity-based Signatures from Lattices Without Random Oracles [ C ]//Proceedings of the International Workshop on Post-quantum Cryptography Darmstadt. [ S. 1. ] :Springer-Verlag ,2010:215-222.

二级参考文献10

  • 1Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 2Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 3Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 4Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 5Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 6Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 7Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 8I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 9Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)
  • 10Jin-Yi Cai.A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor[J].Discrete Applied Mathematics.2002(1)

共引文献44

同被引文献28

  • 1Shafi Goldwasser,Silvio Micali,Ronald L Rivest.A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing . 1988
  • 2Bellare M,Rogaway P.Random oracles are practical: a paradigm for designing efficient protocols. Proceedings of the First ACM Conference on Computer and Communications Security . 1993
  • 3B. G. Kang,J. H.,S. G. Halm.A new forward secure signature scheme. Cryptology ePrintArchive . 2004
  • 4Gentry C,Peikert C,Vaikuntanathan V.Trapdoors for hard lattices and new cryptographic constructions. Proceedings of the 40th Annual ACM Symposium on Theory of Computing, (STOC’’08) . 2008
  • 5Ran Canetti,Shai Halevi,Jonathan Katz.??A Forward-Secure Public-Key Encryption Scheme(J)Journal of Cryptology . 2007 (3)
  • 6David Cash,Dennis Hofheinz,Eike Kiltz.Bonsai Trees, or How to Delegate a Lattice Basis. Journal of Cryptology . 2012
  • 7Jia Yu,Rong Hao,Fanyu Kong,Xiangguo Cheng,Jianxi Fan,Yangkui Chen.??Forward-secure identity-based signature: Security notions and construction(J)Information Sciences . 2010 (3)
  • 8Ajtai M.Generating hard instances of lattice problems. ACM Symposium on Theory Of Computing(STOC) . 1996
  • 9Xiaojun Zhang,Chunxiang Xu,Chunhua Jin,Run Xie.??Efficient forward secure identity-based shorter signature from lattice(J)Computers and Electrical Engineering . 2013
  • 10Ruckert M.Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. Post-Quantum Cryptography . 2010

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部