期刊文献+

一种半监督重复软最大化模型

A Semi-supervised Replicated Softmax Model
下载PDF
导出
摘要 概率主题模型由于其高效的数据降维和文档主题特征挖掘能力被广泛应用于各种文档分析任务中,然而概率主题模型主要基于有向图模型构建,使得模型的表示能力受到极大限制。为此,研究分布式主题特征表示和基于无向图模型玻尔兹曼机的重复软最大化模型(RSM),提出一种半监督的RSM(SSRSM)。将SSRSM、RSM模型提取的主题特征应用于多标记判别任务中,实验结果表明,相比LDA和RSM模型,SSRSM模型具有更好的多标记判别能力。 Recently probabilistic topic models are widely used because of high performance of dimension reduction and topic features mining. However, topic models are built based on directed graph model which limits the performance of data representation. This paper based on the studies on distributed feature representation and Replicated Softmax Model (RSM) which is based on the Restricted Bolzmann Machine (RBM) proposes a Semi Supervised Replicated Softmax Model(SSRSM). Experimental results show that the SSRSM outperforms LDA and RSM in task of topics extraction. In addition,by using the features learned by SSRSM and RSM in task of multi-label classification,it is shown that SSRSM has a better performance of multi-label learning than RSM.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期209-214,共6页 Computer Engineering
基金 国家自然科学基金资助项目(71172219) 国家科技型中小企业创新基金资助项目(11C26213402013)
关键词 主题模型 无向图模型 重复软最大化模型 半监督模型 特征学习 topic model undirected graph model Replicated Softmax Model(RSM) semi-supervised model featurelearning
  • 相关文献

参考文献22

  • 1Blei D M, Ng A Y, Jordan M I. Latent Dirichlet AllocationE J ]. Journal of Machine Learning Research, 2003,3 ( 3 ) :993-1022.
  • 2Wei Xing,Croft W B. LDA-based Document Models for Ad-hoc Retrieval [ C ]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA : ACM Press ,2006 : 178-185.
  • 3Teh Y W, Newman D, Welling M. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation I M 1. Cambridge, USA: MIT Press, 2006.
  • 4Elman J L. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure I J ]. Machine Learning, 1991,7 ( 2/3 ) : 195-225.
  • 5Ackley D H, Hinton G E, Sejnowski T J. A Learning Algorithm for Boltzmann Machines I Jl. Cognitive Science, 1985,9 ( 1 ) : 147-169.
  • 6Tieleman T. Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient: C:// Proceedings of the 25th International Conference on Machine Learning. New York, USA : ACM Press, 2008 : 1064-1071.
  • 7Freund Y, Haussler D. Unsupervised Learning of Distri- butions on Binary Vectors Using Two Layer Networks [ J ]. Neural Computation,2002,14(8) :1711-1800.
  • 8Hinton G E. Products of Experts I C ]//Proceedings of the 9th International Conference on Artificial Neural Networks. Washington D. C. ,USA: IEEE Press, 1999 : 1-6.
  • 9Younes L. On the Convergence of Markovian Stochastic Algorithms with Rapidly Decreasing Ergodicity Rates[ J]. International Journal of Probability and Stochastic Processes, 1999,65 (3/4) : 177-228.
  • 10Boureau Y,Cun Y L. Sparse Feature Learning for Deep Belief Networks [ D ]. New York, USA: New York University, 2007.

二级参考文献32

  • 1Steyvers M, Griffiths T. Probabilistic topic models. Handbook of Latent Semantic Analysis, 2007,427(7) :424-440.
  • 2Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. The Journal of Machine Learning Research, 2003,3 : 993 - 1022.
  • 3Mimno D, McCallum A. Topic models conditioned on arbitrary features with dirichlet- multinomial regression. Proceedings of the 24th Annual Conference on Uncertainty in ArtificialIn- telligence, Helsinki, Finland, 2008.
  • 4Kim H, Sun Y, Hockenmaier J, et al. ETM: Entity topic models for mining documents associated with entities. 2012 IEEE 12tu International Conference on Data Mining. IEEE, 2012:349-358.
  • 5Blei D M, McAuliffe J D. Supervised topic models. Advances in Neural Information Processing Systems (NIPS), 2007.
  • 6Ramage D, Hall D, Nallapati R, et aZ. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. Proceedings of the 2009.Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1. Association for Computational Linguistics, 2009 : 248 - 256.
  • 7Ramage D, Manning C D, Dumais S. Partially labeled topic models for interpretable text mining. Proceedings of the 17'h ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,2011:457-465.
  • 8Hofmann T. Probabilistic latent semantic analysis. Proceedings of the 15^th conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. , 1999 : 289-296.
  • 9Palmer J, Wipf D, Kreutz-Delgado K, et al. Variational EM lgorithms for non Gaussian latent variable models. Advances in Neural Information Processing Systems, 2006,18 : 1059.
  • 10Minka T, Lafferty J. Expectation propagation for the generative aspect model. Proceedings of the 18^th Conference on Uncertainty in Artificial Intel- ligence. Morgan Kaufmann Publishers Inc. , 2002:352-359.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部