期刊文献+

多层感知机权值扰动敏感性计算算法研究 被引量:1

Research on Computation Algotithm of Multilayer Perceptron Sensitivity to Weights Perturbation
下载PDF
导出
摘要 多层感知机(MLP)对权值扰动的敏感性反映当网络权值发生变化时网络输出的变化规律,是研究MLP学习机制的一种重要衡量工具。系统讨论MLP对权值扰动的敏感性计算方法,提出一种层层递进的敏感性近似算法。利用数值积分从第一层神经元开始计算,后一层神经元的计算利用前一层的结果,最终给出所有层神经元以及整个网络的敏感性计算表达式。该敏感性计算算法只要求网络的各维输入相互独立,而对其具体的分布无任何限制,同时还具有计算复杂度低、通用性强等优点,模拟实验验证了该算法的准确性和有效性。 Multilayer Perceptron (MLP) sensitivity to weights perturbation reflects the change rule of the network output when network weights get disturbed. It is an important measure for research on learning mechanism. This paper systematically discusses the computation of the sensitivity to weights perturbation and proposes an approximation algorithm which computes the sensitivities layer by layer. The sensitivity is defined as the mathematical expectation of absolute output deviations due to weights perturbation. Firstly the algorithm computes the sensitivities of the first layer and then the next layer which will use the former layer' s results and finally gives the computation expressions of all the neurons and the whole network. This algorithm requests a weak assumption on the input,that is,input elements need only to be independent of each other. It also has low computation complexity and is more applicable to real applications. Experimental results demonstrate the proposed algorithm is highly accurate.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期225-232,共8页 Computer Engineering
基金 国家自然科学基金青年基金资助项目(61403205)
关键词 敏感性 多层感知机 权值 扰动 期望 sensitivity Multilayer Perceptron (MLP) weight perturbation expectation
  • 相关文献

参考文献18

  • 1Bernier J L,Ortega J, Rojas I, et al. A Quantitive Study of Fault Tolerance, Noise Immunity and Generalization Ability of MLPs: J]. Neural Computation,2000,12( 1 ) : 2941-2964.
  • 2Yeung D S, Ng W W Y, Wang D, et al. Localized Generalization Error Model and Its Application to Architecture Selection for Radial Basis Function Neural Network [ J 1. IEEE Transactions on Neural Networks, 2007,18 ( 5 ) : 1294-1305.
  • 3Engelbrecht A P. A New Pruning Heuristric Based on Variance Analysis of Sensitivity Information I J ]. IEEE Transactions on Neural Networks ,2001,12 (6) : 1386-1399.
  • 4Zeng X, Yeung D S. Hidden Neuron Pruning of Multilayer Perceptrons Using a Quantified Sensitivity Measure E J ]. Neurocomputing, 2006,69 ( 7-9 ) : 825 -837.
  • 5Zeng X,Shao J, Wang Y. A Sensitivity-based Approach for Pruning Architecture of Madalines I J ]. Neural Computing & Applications ,2009,18 ( 1 ) :957-965.
  • 6Chart P P K,Zeng X,Tsang E E C,et al. Neural Network Ensemble Pruning Using Sensitivity Measure in Web Appli- cationsIC]//Proceedings of International Conference on System, Man and Cybernetics. Washington D. C., USA: IEEE Press ,2007 : 125-134.
  • 7Shi D,Yeung D S,Gao J. Sensitivity Analysis Applied to the Construction of Radial Basis Function NetworksIJ]. IEEE Transactions on Neural Networks, 2005, 18 ( 7 ) : 951-957.
  • 8Yeung13 S, Chan P P K, Ng W W Y. Radial BasisFunction Network Learning Using Localized Generalization Error Model [ J 3. Information Science, 2009, 32 ( 1 ) : 3199-3217.
  • 9Yang Jing, Zeng Xiaoqin, Zhong Shuiming, et al. Effective Neural Network Ensemble Approach for Improving Generalization Performace E J 1. IEEE Transactions on Neural Networks and Learning Systems, 2013,24(6) :878-887.
  • 10Ng W W Y,Yeung D S,Firth F,et al. Feature Selection Using Localized Generalization Error for Supervised Classification Problem for RBFNN I J 1. Pattern Recognition ,2008,23 ( 1 ) :3706-3719.

二级参考文献21

  • 1Xiaoqin Zeng,Jing Shao,Yingfeng Wang,Shuiming Zhong.A sensitivity-based approach for pruning architecture of Madalines[J]. Neural Computing and Applications . 2009 (8)
  • 2Wang Y,Zeng X,Yeung D S,et al.Computation of Madalines’sensitivity to input and weight perturbations. Neural Computation . 2006
  • 3X Zeng,Y Wang,K Zhang.Computation of adalines’ sensitivity to weight perturbation. IEEE Transactions on Neural Networks . 2006
  • 4S. W. Piché.The selection of weight accuracies for Madalines. IEEE Transactions on Neural Networks . 1995
  • 5F. H. Glanz.Statistical extrapolation in certain adaptive pattern recognition systems. . 1965
  • 6R. G. Winter.Madaline rule II: a new method for training networks of Adalines. . 1989
  • 7M. Stevenson,R. Winter,B. Widrow.Sensitivity of feedforward neural networks to weight errors. IEEE Transactions on Neural Networks . 1990
  • 8J. Y. Choi,C. H. Choi.Sensitivity analysis of multilayer perceptron with differentiable activation functions. IEEE Transactions on Neural Networks . 1992
  • 9C. Alippi,V. Piuri,M. G. Sami.Sensitivity to errors in artificial neural networks: a behavioral approach. IEEE Trans Circuits Syst I-Regul Pap . 1995
  • 10A. Y. Cheng,D. S. Yeung.Sensitivity analysis of neocognitron. IEEE Transactions on Systems Man and Cybernetics . 1999

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部