期刊文献+

基于反距离加权插值的水声数据可视化算法 被引量:17

Visualization Algorithm of Underwater Acoustic Data Based on Inverse Distance Weight Interpolation
下载PDF
导出
摘要 在使用光线投影法对体数据进行三维重建时,采样点不一定刚好落在数据点的位置,需要通过插值来计算采样点的数值。插值方法的选择直接影响最终的可视化绘制效果。反距离加权插值算法是一种计算相对快速、简单的插值方法。通过分析三维水声数据特点,引入反距离加权插值算法,确定插值算法的重要参数搜索半径和权值下降指数,在搜索半径确定的球体内对采样点进行插值,进而得到采样点的灰度值。使用人工干预实现水声数据的分层,通过调整插值参数改进绘制质量。实验结果表明,经过反距离加权插值后的图像具有较好的绘制效果。 In the use of ray casting algorithm for 3-d reconstruction of volume data, the sampling point will not necessarily fall in the location of the data point. So interpolation is needed for the values of sampling points. The choice of interpolation method directly affects the rendering quality. Inverse Distance Weight (IDW) interpolation algorithm is a relatively fast and simple interpolation method. In this paper, through the analysis of the characteristics of underwater acoustic data, a method using the inverse distance weight interpolation for volume data is proposed. The important parameters of the interpolation algorithm, the search radius and power exponent are selected. Interpolate in the sphere is determined by the search radius. The grey value of the sampling point is calculated. It also layers the acoustic data by manual operation. And the different layer parameters of underwater acoustic data are parameters with different parameters to get better results. Experimental results show that the image with inverse distance weight interpolation has better rending quality than before.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期266-270,275,共6页 Computer Engineering
基金 国家自然科学基金青年基金资助项目(60802047)
关键词 体数据可视化 反距离加权插值 光线投射法 搜索半径 权值下降指数 volume data visualization Inverse Distance Weight (IDW) interpolation ray casting method searchradius weight drop exponent
  • 相关文献

参考文献9

  • 1周志光,陶煜波,林海.基于视觉感知增强的最大密度投影算法[J].软件学报,2013,24(3):639-650. 被引量:3
  • 2唐泽圣,袁骏.用图象空间为序的体绘制技术显示三维数据场[J].计算机学报,1994,17(11):801-808. 被引量:29
  • 3Walia E, Singh C. An Analysis of Linear and Non-linear Interpolation Techniques for Three Dimensional Render- ing [ C ]//Proceedings of New Trends Conference on Geometric Modeling and Imaging. Washington D. C. , USA : IEEE Press ,2006:69-76.
  • 4Tomczak M. Spatial Interpolation and Its Uncertainty Using Automated Anisotropic Inverse Distance Weighting-cross Validation/Jackknife Approach [ J].Journal of Geographic Information and Decision Analysis, 1998,2 ( 2 ) : 18-30.
  • 5Falch T L, Elster A C, Floystad J B, et al. GPU- accelerated Visualization of Scattered Point Data [ J ]. IEEE Access,2013,1:566-568.
  • 6周敏,黄芳.IDW在医学断层图像可视化中的应用[J].计算机系统应用,2009,18(10):160-163. 被引量:3
  • 7赵晓捷,穆冬,薛斌党.反距离加权插值自适应图像直方图均衡化算法[J].中国体视学与图像分析,2010,15(1):8-12. 被引量:11
  • 8Yucel M, Ormeci C. Land Spatial Interpolation Using Surface Temperature Based a Modified Inverse Distance Weighting Method[ EB/OL]. (2013-08-04). http://en. wikipedia, or g/wiki/Inverse distance_weighting.
  • 9Lu G Y, Wong D W. An Adaptive Inverse-distance Weighting Spatial Interpolation Technique [ J 1. Computers & Geosciences ,200g ,34 ( 9 ) : 1044-1055.

二级参考文献36

  • 1陈志强,徐丹,张丽,刘以农,高文焕,康克军.用于高能射线透视成像的大型图像对比度增强算法[J].中国体视学与图像分析,2003,8(2):65-68. 被引量:7
  • 2Lu GY, Wong DW. An adaptivee inversedistance weighting spatial interpolation technique. Computers & Geosciences, 2008,(34):1044- 1055.
  • 3http ://en.wikipedia.org/wiki/Linear_interpolation.
  • 4Upson C, Keeler M. V-BUFFER:Visible Volume Rendering.ComputerGraphics, 1988,20(4):59 - 64.
  • 5Rajon DA, Bolch WE. Marching cube algorithm: review and trilinear interpolation adaptation for imagebased dosimetric models.Computerized Medical Imaging and Graphics, 2003,27:411 - 435.
  • 6Patrick M, Bartier C. Keller P. Multi variate interpolation to incorporate thematic surface data using inverse distance weighting(idw). Computer & Geosciences, 1996,22(7):795 - 799.
  • 7He QH, Zhang ZX, Yi C. 3D fluorescence spectral data interpolation by using IDW. Computers & Geosciences, 2006,(32):43 - 51.
  • 8Kim Y T. Contrast enhancement using brightness preserving bi - histogram equalization [ J ]. IEEE Transac Consum Electronics, 1997, 43(1):1 -8.
  • 9Menotti D, Najman L, Facon J, et al. Multi-histogram equalization methods for contrast enhancement and brightness preserving [ J]. IEEE Transac Consum Electronics, 2007, 53(3) :1186 - 1194.
  • 10Jafar I, Ying H. New algorithms for contrast enhancement in grayscale images based on the variational definition of histogram equalization[J]. Integr Computer-Aided Engin,2008, 15(2) :131 - 147.

共引文献42

同被引文献232

引证文献17

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部