期刊文献+

改进的ISOMAP算法在人脸识别中的应用

Application of Improved ISOMAP Algorithm for Face Recognition
下载PDF
导出
摘要 图像是一种高维数据,在图像检索中容易产生维数灾难问题。传统的降维方法很难有效地揭示高维数据的内在本质结构,而流形学习是一种非线性降维方法,其目的是获取高维观测数据的低维嵌入表示并挖掘出隐藏在高维图像数据中的本征信息与内在规律。本文结合SIFT特征提取算法与ISOMAP流形学习算法在人脸图像数据集上进行检索实验。分析探讨近邻参数以及内在本征维数的大小对人脸图像识别效果的问题。 Image data is high-dimensional data which make it easily prone to the dimension disaster. The traditional dimensionali-ty reduction methods can not recover the inherent structure. Manifold learning is a nonlinear dimensionality reduction technique, it aims to find low-dimensional compact representations of high-dimensional observation data and explore the inherent law and in-trinsic dimension of data. In this paper, the feature extraction method-SIFT and the adaptive ISOMAP method are combined and conducted on the real face image dataset. This paper analyzes and discusses the problem of the effects of the neighborhood param-eter and the intrinsic dimension size on the face image recognition.
出处 《计算机与现代化》 2015年第9期25-29,共5页 Computer and Modernization
基金 江苏省高校自然科学研究项目(14KJD520003)
关键词 图像检索 流形学习 降维 本征维数 image retrieval manifold learning dimensionality reduction intrinsic dimension
  • 相关文献

参考文献17

  • 1Jolliffe I. Principal Component Analysis [M].2nd ed. New York: Springer Verlag, 2002.
  • 2Comon Pierre. Independent component analysis:A new concept? [J].Signal Processing, 1994,36(3):287-314.
  • 3Cox T F, Cox M A A. Multidimensional Scaling[M].2nd ed. Chapman and Hall/CRC, 2000.
  • 4Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290(5500):2319-2323.
  • 5Tenenbaum J B. Mapping a manifold of perceptual observations[C]// Advances in Neural Information Processing Systems. 1998,10:682-688.
  • 6Wen Guihua, Jiang Lijun, Wen Jun. Kernel relative transformation with applications to enhancing locally linear embedding[C]// Proceedings of the International JointConference on Neural Networks. 2008:3401-3406.
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2001,2909(5500):2323-2326.
  • 8Wang Heyong, Zheng Jie, Yao Zhengan, et al. Improved locally linear embedding through new distance computing[C]// Advances in Neural Networks. 2006:1326-1333.
  • 9Chang H, Yeung D. Robust locally linear embedding[J].Pattern Recognition, 2006,39(6):1053-1065.
  • 10Valencia-Aguirre J, lvarez-Mesa A, Daza-Santacoloma G, et al. Automatic choice of the number of nearest neighbors in locally linear embedding[C]// Progress inPattern Recognition, Image Analysis, Computer Vision, and Applications. 2009:77-84.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部