期刊文献+

动物遗传设计群体混合模型连锁分析方法

Linkage Analysis Method of Mixed Model in Animal Genetic Design Population
下载PDF
导出
摘要 研究提出了一个同时含有主效基因和微效多基因的混合模型连锁分析方法。首先应用LASSO方法快速估计线性混合模型(LMM)非零的主效位点,并将这些位点效应视为固定效应;而后把基于约束极大似然法(REML)估计得到的微效多基因效应再放入LMM中作为随机效应;从而最终实现QTL遗传参数估计和基因定位连锁分析。针对系谱群体的定位分析,该模型,即LASSO-LMM法,不仅很好地继承了单独LASSO法的计算速度,而且还具有比单独LMM法更好的遗传参数估计稳健性。为了具体比较这3种定位方法,采用计算机模拟数据验证。结果表明,相比于单独LASSO法和单独LMM法,LASSO-LMM法在QTL遗传参数估计和统计效力上总体表现出更高的估计精确度和检测效率。 This study proposes a linkage analysis method of mixed model which contains both the major genes and the polygenes. Firstly, the compression technology of LASSO is used to quickly estimate the non- zero major gene loci in the linear mixed model (LMM) ; and then these loci effects regarded as fixed effects and the random polygenic genetic effects predicted by restricted maximum likelihood (REML) are simultaneously embedded into the LMM; finally we conduct the estimation of QTL genetic parameter and the linkage analysis of gene mapping. On account of the analysis of mapping in pedigree population, the model,so-called LASSO-LMM method, can not only inherit the computing speed of LASSO method, but also possess the better robustness of genetic parameter estimated than LMM method. In order to compare these three mapping methods in detail, we adopt the computer simulation datasets to make a validation. The result shows that compared with the other two methods, in terms of QTL genetic parameter estimation and statistical power, LASSO-LMM method totally performs a higher accuracy of estimation and detectableefficiency.
出处 《上海交通大学学报(农业科学版)》 2015年第4期65-70,76,共7页 Journal of Shanghai Jiaotong University(Agricultural Science)
基金 国家自然科学基金(30972077 31172190)
关键词 LASSO 约束极大似然法 线性混合模型 系谱群体 基因定位 LASSO restricted maximum likelihood linear mixed model pedigree population gene mapping
  • 相关文献

参考文献31

  • 1Haseman J K, Elston R C. The investigation of link- age between a quantitative trait and a marker locus [J]. Behavior genetics, 1972,2 ( 1 ) : 3-19.
  • 2Patterson H D, Thompson R. Recovery of inter-block information when block sizes are unequal[J]. Bi- ometrika, 1971,58(3) : 545-554.
  • 3Amos C I. Robust variance-components approach for assessing genetic linkage in pedigrees [J]. The Ameri- can Journal of Human Genetics, 1994,54 (3) : 535-543.
  • 4Xu S,Atchley W R. A random model approach to in- terval mapping of quantitative trait loci [J].Genetics, 1995,141(3) : 1189-1197.
  • 5Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees[J].The Ameri- can Journal of Human Genetics, 1998, 62 (5): 1198-1211.
  • 6Chen W M, Broman K W, Liang K Y. Power and ro- bustness of linkage tests for quantitative traits in gen- eral pedigrees[J].Genetic Epidemiology, 2005,28 (1) : 11-23.
  • 7Chen W M, Broman K W, Liang K Y. Quantitative trait linkage analysis by generalized estimating equa- tions: Unification of variance components and Hase- man-Elston regression [J]. Genetic Epidemiology, 2004,26(4) :265-272.
  • 8Sham P C, Purcell S. Equivalence between Haseman- Elston and variance-components linkage analyses for sib pairs [J]. The American Journal of Human Genet- ics, 2001,68(6) : 1527-1532.
  • 9Xu S. Mapping quantitative trait loci using multiple families of line crosses [J].Genetics, 1998, 148 ( 1 ) : 517-524.
  • 10Kang H M,Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism as- sociation mapping [J]. Genetics, 2008, 178 ( 3 ) : 1709-1723.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部