期刊文献+

李2-代数构造2-顶点代数(英文)

2-Vertex Algebras Associated to Lie 2-Algebras
原文传递
导出
摘要 利用内范畴的工具给出2-顶点代数的概念.接着给出两个2-顶点代数的直和和张量积还是2-顶点代数这一重要性质.作为2-顶点代数的例子,从一个李2-代数g出发构造一个2-顶点代数Vk(g). Our main goal in this paper is to give the notion of 2-vertex algebra by using the internal category theory. Then we obtain that the direct sum and tensor product of two 2-vertex algebras are also 2-vertex algebras. As an example, we construct a 2-vertex algebra Vk(g) associated to a Lie 2-algebra g.
作者 陈伟 邓未冰
出处 《河南大学学报(自然科学版)》 CAS 2015年第5期515-520,共6页 Journal of Henan University:Natural Science
基金 Supported by the National Natural Science Foundation of China(11405060)
关键词 内范畴 2-顶点代数 李2-代数 internal category 2-vertex algebra Lie 2-algebra
  • 相关文献

参考文献12

  • 1Frenkel I, Lepowsky J, Meurman A. Vertex operator algebras and the monster[-J]. Pure and Appl Math, 1988(134).
  • 2Borcherds R. Vertex algebras, Kac-Moody algebras and the monster[J]. Proc Natl Acad Sci USA, 1986, 83; 3068--3071.
  • 3Crane L. Clock and category., is quantum gravity algebraic? [J]. Jour Math Phys, 1995, 36.. 6180--6193.
  • 4Crane L, Frenkel I. Four dimensional topological quantum field theory, Hopf categories, and the canonical bases[J]. Jour Math Phys, 1994,35.. 5136--5154.
  • 5Baez J C, Crans A S. Higher-dimensional algebra. VI. Lie 2 algebra[J]. Theory Appl Categ (electronic), 2004, 12: 492-- 538.
  • 6Baez J C, Lauda A D. Higher-dimensional algebra. V. 2-Group[J]. Theory Appl Categ, 2004, 12(14) .. 423--491.
  • 7Ehresmann C. Categories structurees[-J. Ann Ec Normale Sup, 1963, 80; 349 426.
  • 8Ehresmann C. Categories structurees III; Quintettes etapplieations covariantes[M]. Cahiers Top et GD V, 1963.
  • 9Ehresmann C. Introduction to the theory of structured categories[-J. Technical Report Univ of Kansas at Lawrence, 1966.
  • 10Borceux F. Handbook of Categorical Algebra 1.. Basic Category Theory[M]. Cambridge: Cambridge U Press, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部