期刊文献+

社区问答中基于机器翻译的问题检索模型的研究

Research on Translation-based Question Retrieval Model for Community Question Answering
原文传递
导出
摘要 在大规模的Yahoo数据和百度数据上利用问题本身、问题描述、最佳答案,以及其他答案构建了7种不同的翻译模型,并且在两个人工标注数据集上对比了这些模型在问题检索上的表现,研究利用机器翻译的技术在社区问答网站上进行问题检索.实验结果显示,这些模型都可以提升传统语言模型在问题检索上的效果,但在Yahoo数据和百度数据上,模型的表现并不相同.在平均答案数较多的Yahoo数据上,利用问题、问题描述和所有答案串联建立的模型表现最好,而在百度数据上,只用问题和问题描述就可以达到最好的效果. The paper studies the problem of leveraging the techniques of machine translation for question retrieval in community question answering (CQA) sites. The paper leverages questions, question descriptions, best answers, and other answers from large scale Yahoo data and Baidu data and trains 7 variants of translation based retrieval models. We compare different models on two manually labeled data sets. The experimental results reveal that all the translation based models can improve the traditional language model for information retrieval on question retrieval. Moreover, the performances of different models are not consistent on Yahoo data and Baidu data. On Yahoo data, in which there are more answers per question, translation model trained with questions, descriptions and concatenation of all answers has the best performance, while, on Baidu data, the best performing model is learned with only questions and their descriptions.
作者 赵新强 魏丹
出处 《河南大学学报(自然科学版)》 CAS 2015年第5期594-598,共5页 Journal of Henan University:Natural Science
基金 国家自然科学基金(61402150)
关键词 社区问答 问题检索 机器翻译 翻译语料 模型 community question answering question retrieval machine translation translation corpus model
  • 相关文献

参考文献11

  • 1Zhai C, Lafferty J. A study of smoothing methods for language models applied to information retrieval[J]. ACM Trans. Inf. Syst., 2004, 22(2):179--214.
  • 2Xue X, Jeon J, Croft W B. Retrieval models for question and answer archives[C]//Proceedings of the 31st annual interna- tional ACM SIGIR conference on research and development in information retrieval. New York.. ACM, 2008..475 482.
  • 3Burke R D, Hammond K J, Kulyukin V, et al. Question answering from frequently asked question files.. Experiences with the faq finder system[J]. AI Magazine, 1997, 18(2) ..57--64.
  • 4Cao X, Cong G, Cui B, et al. The use of category information in language models for question retrieval[C]//Proceedings of the Eighteenth Conference on Information and Knowledge Management. Hong Kong: CIKM, 2009.. 265 274.
  • 5Cao X, Cong G, Cui B, et al. A generalized framework for exploring category information for question retrieval in commu- nity question answer archives[C]//Proceedings of the 19th international conference on World wide web. New York.. ACM, 2010:201--210.
  • 6Jeon J, Croft W B, Lee J H. Finding similar questions in large question and answer archives[C]// Proceedings of the Sev- enteenth Conference on Information and Knowledge Management. CA:CIKM, 2005.. 84--90.
  • 7Zhou G, Cai L, Zhao J, et al. Phrase-based translation model for question retrieval in community question answer archives [C]// Proceedings of the 49th Annual Meeting of the Association of Computational Linguistics. Portland: ACL, 2011 : 653 --662.
  • 8Duan H, Cao Y, Lin C Y, et al. Searching questions by identifying question topic and question focus[C]// Proceedings of the 46th Annual Meeting of the Association of Computational Linguistics. Ohio.. ACL, 2008..156--164.
  • 9Wang K, Ming Z, Chua T S. A syntactic tree matching approach to finding similar questions in community based QA serv- ices[C]// Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Informa- tion Retrieval. Boston: SIGIR, 2009 : 187-- 194.
  • 10Baeza-Yates R, Ribeiro-Neto B. Morden information retrieval[M]. Boston: Addison-Wesley Longman Publishing Co... 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部