摘要
提出一种用于鱼雷发动机的参数自整定PID控制方法。该方法利用支持向量机的非线性函数拟合能力辨识发动机的动态特性,采用粒子群算法实现PID控制器的参数优化。仿真实验表明,支持向量机能很好地拟合发动机的动态特性,基于粒子群算法的参数自整定PID控制器响应快速、无超调,控制效果良好,具有工程应用价值。
This paper presents a self-tuning PID control scheme for torpedo engine. Due to its excellent performance in nonlinear function approximation, support vector machine is used to identify the dynamics of torpedo engine. The PID parameters are tuned using particle swarm optimization. The simulation results demonstrate that the support vector machine is able to approximate engine dynamics with high accuracy, and the proposed controller achieves good performance in terms of convergence speed and overshoot.
出处
《舰船科学技术》
北大核心
2015年第7期108-111,共4页
Ship Science and Technology
基金
中国博士后科学基金资助项目(2014M552503)
关键词
鱼雷发动机
PID控制
支持向量机
粒子群算法
参数优化
torpedo engine
PID control
support vector machine (SVM)
particle swarm optimization (PSO)
parameter optimization