期刊文献+

夹心结构ZnO-NiO-ZnCo_2O_4混合微米球锂的存储性能

Study of Lithium Storage Properties for Yolk-shell ZnO-NiO-ZnCo_2O_4 Composite Microspheres
下载PDF
导出
摘要 通过简单的液相吸附法合成夹心结构的柠檬酸锌镍钴微米球并以此为自模板在空气中煅烧制备了夹心结构的ZnO-NiO-ZnCo2O4混合微米球.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等研究方法对合成样品的物相、形貌、结构及成分进行了表征.用作锂离子电池负极材料时,夹心结构的ZnO-NiO-ZnCo2O4混合微米球显示出良好的锂存储性能.在100mA/g电流密度下充放电循环140次后夹心结构混合微米球的比容量达到1 194mAh/g.混合微米球优越的锂存储性能与其独特的夹心结构、小的纳米组成单元以及不同成分间的协同效应密切相关. Yolk-shell ZnO-NiO-ZnCo2O4 composite microspheres were successfully synthesized with calcination of yolk-shell zinc-nickel-cobalt citrate microspheres precursor in air. The precursor was pre-produced through a two-step consecutive aging process of zinc citrate solid microspheres in nickel nitrate and cobalt nitrate solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to characterize the morphologies,structures and compositions of the as-obtained samples. When used as the anode materials for lithium ion batteries, the harvested yolk-shell ZnO-NiO-ZnCo2 04 com- posite microspheres exhibited good electrochemical properties. After 140 cycles,a high specific capacity of about 1 194 mAh/g could be reached at a current density of 100 mA/g. The special yolk-shell configuration, the synergetic effect between ZnO, NiO and ZnCo2O4 nanoparticles,and the nanometer-sized building blocks of composite microspheres were responsible for excellent lithium storage properties.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期674-679,共6页 Journal of Xiamen University:Natural Science
基金 国家重大科学研究计划项目(2012CB933103) 国家自然科学基金(51171158 51371154) 中央高校基础业务专项(201312G003)
关键词 ZnO-NiO-ZnCo2O4 夹心结构 锂离子电池 负极材料 ZnO-NiO-ZnCo2O4 yolk-shell microspheres lithium ion batteries negative electrode
  • 相关文献

参考文献23

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414 (6861) :359 -367.
  • 2Armand M,Tarascon J M. Building better batteries [J]. Nature,2008,451(7179) :652-657.
  • 3Sharma Y, Sharma N, Rao G V S, et al. Nanophase Zn Co2O4 as a high performance anode material for Lbion batteries [J]. Advanced Functional Materials, 2007, 17 (15) :2855-2861.
  • 4Bai Z,Ju Z,Guo C,et al. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high per- formance anode materials for lithium ion batteries [J]. Nanoscale, 2014,6 (6) : 3268-3273.
  • 5Wang Z Y, Zhou L, Lou X W. Metal oxide hollow nano- structures for lithium-ion batteries [J]. Advanced Materi- als,2012,24(14) :1903-1911.
  • 6Son M Y, Hong Y J, Kang Y C. Superior electrochemical properties of Co304 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis[J]. Chemical Communications,2013,49(50) :5678-5680.
  • 7Wang X,Wu X L,Guo Y G,et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multi- shelled hollow spheres [J]. Advanced Functional Materi als,2010,20(10) :1680-1686.
  • 8Xie Q,Li J,Tian Q,et al. Template free synthesis of zinc citrate yolk shell microspheres and their transformation to ZnO yolk-shell nanospheres[J]. Journal of Materials Chemistry, 2012,22 (27) : 13541-13547.
  • 9Huang L,Waller G H, Ding Y, et al. Controllable interior structure of ZnCozO6 microspheres for high-performance lithium-ion batteries [J]. Nano Energy, 2015,11 : 64-70.
  • 10Xie Q, Zhang X, Wu X, et al. Yolk-shell ZnO-C micro- spheres with enhanced electrochemical performance as anode material for lithium ion batteries[J]. Electro-chimica Acta, 2014,125 : 659-665.

二级参考文献75

  • 1Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68, 87-90.
  • 2Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271-278.
  • 3Bruce, P. G.; Scrosati, B.; Tarascon, J. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
  • 4Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.
  • 5Tabema, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe304-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567-573.
  • 6Wang, L.; Cheng, W.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297-11302.
  • 7Wang, X.; Yang, Z.; Sun, X.; Li, X.; Wang, D.; Wang, P.; He, D. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988-9990.
  • 8Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170-E192.
  • 9Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885-888.
  • 10Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部