期刊文献+

P促进Pd/C高效催化甲酸制氢的研究 被引量:5

Improved Highly Efficient Hydrogen Production from Formic Acid on a Pd/C Catalyst Doped by Phosphorus
下载PDF
导出
摘要 以次亚磷酸钠(NaH2PO2)为还原剂,成功地制备出一种新型高效的Pd-P/C催化剂,其对甲酸-甲酸钠混合液分解制氢具有较高催化活性.经过优化后得到的3%Pd-P/C催化剂,在30℃,反应液甲酸和甲酸钠浓度比为1∶5,总浓度为4mol/L条件下,前1h平均转化频率可达565h-1,该Pd-P/C催化剂的催化活性是传统的以NaBH4还原制得的Pd/C催化剂活性的3.5倍.联合谱学表征结果表明,在Pd粒子的形成生长过程中,P的掺入提高了Pd纳米粒子的分散性,减少了粒子的团聚,最终得到了粒径较小的Pd粒子,从而极大地提高了催化剂的活性.动力学研究表明Pd-P/C催化剂催化甲酸分解的反应活化能为18.63kJ/mol,相比以NaBH4还原所得催化剂(反应活化能为26.69kJ/mol),反应活化能更低. A potent phosphorus-doped Pd nanocatalyst (Pd-P/C) for hydrogen generation from the formic acid (FA) sodium for-mate (SF) mixtures has been successfully prepared via the reduction of Nail2 PO2. Over this 3% Pd-P/C catalyst, the turn over fre- quency (TOF) of 565 h 1 was observed for a FA-SF mixture with a FA/SF concentration ratio of 1:5 and the total concentration of 4 mol/L at 30℃. Compared with Pd/C synthesized with a NaBH4 reduction method,the activity of Pd-P/C is 3.5 times as much. The results of the catalyst characterization demonstrated that the modification with P during the formation and growth of particles resulted in the well-dispersed fine Pd nanoparticles on carbon and enhanced the catalytic performance of the resulted catalyst. Kinetic studies showed that its reaction activation energy was 18.63 kJ/mol when utilizing Pd-P/C,much lower than utilizing Pd/C as a cata lyst (reaction activation energy of 26.69 kJ/mol).
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期707-712,共6页 Journal of Xiamen University:Natural Science
基金 国家重点基础研究发展计划(973计划)(2011CBA00500) 福建省自然科学基金(E0510001)
关键词 甲酸 氢能源 NAH2PO2 PD/C formic acid hydrogen energy NaH2 PO2 Pd/C
  • 相关文献

参考文献18

  • 1Weisz P B. Basic choices and constraints on long-term en- ergy supplies[J]. Physics Today,2004,57(7):47-52.
  • 2von Helmolt R, Eberle U. Fuel cell vehicles: status 2007[J]. Journal of Power Sources,2007,165(2):833-843.
  • 3Enthaler S, yon Langermann J, Schmidt T. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? [J]. Energy & Environmental Sci ence, 2010,3(9) : 1207-1217.
  • 4Zhou X, Huang Y, Xing W, et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd- Au/C and Pd-Ag/C[J]. Chemical Communications, 2008 (30) :3540-3542.
  • 5Metin O, Sun X, Sun S. Monodisperse gold-palladium al- loy nanoparticles and their composition-controlled cataly- sis in formic acid dehydrogenation under mild conditions [J]. Nanoscale,2013,5(3) :910-912.
  • 6Gan W,Snelders D J M,Dyson P J,et al. Ruthenium (Ⅱ)- catalyzed hydrogen generation from formic acid using cat- ionic, ammoniomethyl-substituted triarylphosphine lig- ands[J]. ChemCatChem, 2013,5 (5) : 1126-1132.
  • 7Chen A, Holt-Hindle P. Platinum-based nanostructured materials: synthesis, properties, and applications [J ]. Chem Rev, 2010,110(6) : 3767-3804.
  • 8Cuesta A, Cabello G, Osawa M, et al. Mechanism of the electrocatalytic oxidation of formic acid on metals [J]. ACS Catalysis,2012,2(5) :728 -738.
  • 9Zhou X, Huang Y, Liu C, et al. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature [J ]. ChemSus- Chem,2010,3(12) :1379 -1382.
  • 10Jia L, Bulushev D A, Podyacheva O Y, et al. Pt nanoclus- rers stabilized by N-doped carbon nanofibers for hydro- gen production from formic acid[J]. Journal of Cataly- sis, 2013,307 : 94-102.

同被引文献25

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部