期刊文献+

水热合成Fe_3O_4纳米晶及其作为负极材料研究 被引量:1

Hydrothermal synthesis of Fe_3O_4 nanocrystal as anode material
下载PDF
导出
摘要 在当前能源紧缺、环境污染的双重压力之下,探索新的能源材料显得尤为重要。通过以FeSO4·(NH4)2SO4·6H2O为铁源,油酸为表面活性剂,NaOH、乙醇为溶剂,在水热条件下于180℃反应10h,得到Fe3O4纳米晶。通过对该材料进行X-射线衍射(XRD)、透射电镜(TEM)测试发现其纯度较高,且为边长5~10nm的方形纳米晶颗粒。将该材料作为锂离子电池的负极材料组装成电池进行电化学性能测试发现,其首次放电比容量达到1380mAh/g,在循环20圈后稳定在约100mAh/g。这使得该Fe3O4纳米片成为潜在的锂离子电池负极材料。 Under the dual pressure of energy shortage and environmental pollution, it's important to search for new energy material. Fe3O4 nanocrystal was synthesized by hydrothermal approach using FeSO4.(NH,)2SO4·6 H2O as iron source, oleic acid as surfactant, NaOH and ethanol as solvent, reacting at 180℃ for 10 h. The characterized results of X-ray diffraction (XRD) and transmission electron microscope (TEM) show the high purity product is nanocrystal with the side length of 5-10 nm. By using the product as anode material for Li-ion batteries, the electrochemical performance test shows the initial discharge specific capacity reaches 1 380 mAh/g and the specific capacity is about 100 mAh/g after 20 cycles. So the material is a kind of potential anode material for Li-ion battery.
出处 《电源技术》 CAS CSCD 北大核心 2015年第9期1859-1860,1868,共3页 Chinese Journal of Power Sources
基金 湖南省"十二五"重点学科建设项目(080502) 教育部卓越工程师教育培养计划无机非金属材料工程(080203) 国家自然科学基金面上项目(21176061) 湖南省自然科学基金院校联合项目(13JJ6084)
关键词 水热合成 锂离子电池 FE3O4 纳米晶 负极材料 hydrothermal synthesis Li-ion batteries Fe3O4 nanocrystal anode material
  • 相关文献

参考文献11

  • 1W'U~,'W~d~IG D S, LI Y D. Nanocrystals from solutions: catalysts [J]. Chemistry Society Reviews ,2013(10): 1039.
  • 2娄晓明,黄佳丽,李坦平,胡汉祥.LiFePO_4正极材料充放电模型的研究进展[J].电源技术,2013,37(5):870-872. 被引量:1
  • 3KEMPAIAH M, HONMA I. Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe,Mn) nanomaterials for lithium-ion batteries [J].Advanced Energy Materials, 2012 (2) : 284- 297.
  • 4POIZOT P, LARUELLE S', GRUGEON S, et aL Negative-electrode materials for lithium-ion batteries[J]. Nature, 2000,407 : 496-499.
  • 5YUAN C Z,WU H B,XIE Y,et al. Mixed transition-metal oxides: design, synthesis and energy-related applications [J]. Angewandte Chemie International Editon, 2013,52: 2-19.
  • 6VU A, QIAN Y Q, STEIN A. Electrode materials for lithium-ion batteries-how to prepare them and what makes them special[J]. Ad- vanced Energy Materials, 2012(10): 1002.
  • 7YU Y, CHEN C I-[, SHUI J L, et al.Nickel-Foam-Supported reticular CoO-Li20 composite anode materials for lithium ion batteries [J]. Angewandte Chemie International Editon, 2005,44: 7085-7089.
  • 8TABERNA P L,MITRA S,POIZOT P,et al. High rate capabilities Fe304-based Cu nano-architectured electrodes for lithium-ion battery applications[J].Nature Materials, 2006(5): 567-573.
  • 9LOU X M,WU X Z,ZHANG Y X. Goethite nanorods as anode electrode materials for rechargeable Li-ion batteries [J]. Electroche- mistry Communications, 2009,11 : 1696-1699.
  • 10MITRA S, POIZOT P, FINKE A, et al.Growth and electrochemical characterization versus lithium of Fe304 electrodes made via elec- trodeposition [J]. Advanced Functional Materials, 2006,16 : 2281- 2287.

二级参考文献15

  • 1PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B.Pho- spho-olivines as positive-electrode materials for rechargeable lithi- um batteries[J]. Journal of the Electrochemical Society, 1997,144(4): 1188 -1194.
  • 2ANDERSSON A S, THOMAS J O. The source of fist-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001 (97/98):498-502.
  • 3CUISINIER M, MARTIN J F, NICOLAS D, et al. Moisture drivenaging mechanism of LiFeP04 subjected to air exposure [J]. Electro- chemistry Comrnunications,201 O, 12:238-241.
  • 4ISLAM M S, DRISCOLL D J, FISHER C A J, et al. Atomic-scale investigation of defects, dopants and lithium transport in the LiFe- PO4 olivine-type battery material [J]. Chemistry of Materials,2005, 17:5085-5092.
  • 5N1SHIMURA S 1, KOBAYASHI G, OHOYAMA K, et al. Experi- mental visualization of lithium diffusion in LiFePO[J]. Nature Ma- terials,2008,7:707-711.
  • 6YAMADA A, KOIZUMI H, SONOYAMA N, et al. Phase change in LixFePO4 [J]. Electrochemical and Solid-State Letters,2005,8 (8) A409-A413.
  • 7LAFFONT L,DELACOURT C,GIBOT P, et al.Study of the LiFePOd FePO4 two-phase system by high-resolution electron energy loss spectroscopy[J]. Chemistry of Materials,2006,18:5520-5529.
  • 8YAMADA A, KOIZUMI H, NISHIMURA S 1, et al. Room-tempera- ture miscibility gap in Li.,FePO4[J].Nature Materials,2006,5:357-360.
  • 9CHEN G Y, SONG X Y, RICHARDSON T J. Electron microscopy sturdy of the LiFePO4 to FePO phase transition[J]. Electrochemical and Solid-State Letters,2006,9(6):A295-A298.
  • 10MEETHONG N, HUANG H Y S, CARTER W C, et al.Size-depen- dent lithium miscibility gap in nanoscale Li,FePO4[J]. Electroche- mical and Solid-State Letters,2007,g(8):A409-A413.

同被引文献24

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部