期刊文献+

图像检索系统中的缩放功能

Zoom Feature in Image Retrieval System
下载PDF
导出
摘要 图像检索系统是用户导向的。根据用户意图的不同,检索结果的离散度对用户的体验有着不同的影响。一些情况下,用户希望得到的是"类而不同"的结果。当前以关键字为基础的检索系统并不能很好地捕捉到用户的意图。因此,新的交互内容——缩放比例被引入检索系统,以消除用户的意图与检索结果离散度之间的隔阂,使用户根据自己的意图直接调整检索的结果。首先得到检索系统返回的图像,之后计算图像间的视觉与语义的相似度,再利用层次聚类得到聚类树,最后通过得到用户直接调节的缩放比例,来控制聚类树展开与否。对于每棵展开的子树,选择在原检索结果中拥有最小索引值的节点作为代表。 Image retrieval systems are user-oriented. Diversity of retrieval results has different effects on users' experie- nces depending on their intents. Some users may need those different but similar results, which means higher diversity. Nevertheless current retrieval system which is maiorly based on query keywords can hardly capture users' intents di- rectly from their query. Thus, a new interactive element, zoom factor, was introduced into retrieval system to bridge the gap between users~ intents and the diversity of retrieval results. This enables users to directly control the diversity of results. We first obtained images returned by retrieval system. And then the visual and semantic distances of each other were computed. Hierarchical clustering was then used to form a clustering tree. And finally we controlled the expansion of a sub-tree with users~ directly tune o{ zoom {actor. For each expanded sub-tree,the node with the lowest index in the original results was selected as the representative.
作者 章进洲
出处 《计算机科学》 CSCD 北大核心 2015年第9期13-17,共5页 Computer Science
关键词 图像检索 相关反馈 离散度 层次聚类 Image retrieval,Relevance Feedback,Diversity, Hierarchical clustering
  • 相关文献

参考文献18

  • 1Chen H,Karger D R.Less is more:probabilistic models for retrieving fewer relevant documents[C]∥Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,2006.Seattle,WA,USA,2006:429-436.
  • 2Ritendra D,Dhiraj J,Li J,et al.Image retrieval[J].ACM Computing Surveys,2008,40(2):1-60.
  • 3Rui Y,Huang T S,Ortega M,et al.Relevance feedback:a power tool for interactive content-based image retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8(5):644-655.
  • 4Tang X,Liu K,Cui J,et al.IntentSearch:Capturing user intention for one-click internet image search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7),1342-1353.
  • 5Hoi C H,Lyu M R.A novel log-based relevance feedback technique in content-based image retrieval[C]∥Proceedings of the 12th Annual ACM International Conference on Multimedia,2004.New York,NY,USA,2004:24-31.
  • 6Zhou X S, Huang T S.Relevance feedback in image retrieval:A comprehensive review[J].Multimedia systems,2003,8(6):536-544.
  • 7Carbonell J,Goldstein J.The use of MMR,diversity-basedre-ranking for reordering documents and producing summaries[C]∥Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,1998.Melbourne,Australia,1998:335-336.
  • 8Song K,Tian Y,Gao W,et al.Diversifying the image retrieval results[C]∥Proceedings of the 14th annual ACM international conference on Multimedia,2006.Santa Barbara,CA,USA,2006:707-710.
  • 9Wang M,Yang K,Hua X S,et al.Towards a relevant and diverse search of social images[J].IEEE Transactions on Multimedia,2010,12(8):829-842.
  • 10van Leuken R H,Garcia,et al.Visual diversification of imagesearch results[C]∥Proceedings of the 18th international conference on world wide web,2009.Madrid,Spain,2009:341-350.

二级参考文献8

共引文献1083

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部