期刊文献+

云计算环境下基于主动预测的节点部署模型研究 被引量:2

Research on Resource Deployment Model Based on Active Prediction in Cloud Computing
下载PDF
导出
摘要 随着云计算的不断普及,越来越多的用户选择将自身的业务迁移至云计算系统。用户的使用习惯与社会日常的运行规律也伴随着大量用户涌入云计算系统,如每早8点集中地向云计算系统申请资源节点,这给系统带来了一种可预期的资源冲击。针对上述问题,提出了一种基于主动预测模式的资源部署模型。该模型首先根据预测模块中Holt-Winters季节指数平滑模型的算法周期长度来预测下一个时间周期的任务请求量,通过设计的主动预测算法判断是否应对当前的任务请求量做出响应并得出其具体数量、位置等参数指标,以实现对用户使用规律的主动应对。使用CloudSim进行仿真实验,系统地评判模型的性能。实验结果表明,AF-HW模型在应对可预测的海量并发任务请求时可有效地提升单点及整体的响应速率,使用户得到更好的体验。 With the growing popularity of cloud computing,more and more users choose to migrate their business to the cloud computing system. Users' usage habits and social routine working laws swarm into the cloud computing sys- tem along with the influx of large numbers of users, such as applying intensively to cloud computer system for resource nodes as early as 8:00, which leads into a kind of predictable resources conflict. In view of the problems above, a re- source deployment model based on active prediction was proposed. Firstly, the task request amounts of next cycle are predicted according to the algorithm cycle length of Holt-Winters seasonal exponential smoothing model in prediction model, and determination of whether to make response to the current task request amounts or not and the specific amount, location and other parameter indicators should be made according to the active prediction algorithm designed to achieve active response capabilities to users' usage patterns. The simulation experiment was conducted using CloudSim, and the performance of model proposed was judged systematically. Experimental results show that AF-HW model can effectively enhance the single-point and overall response rate when responding to predictable massive and concurrent task requests,so that users can get a better experience.
出处 《计算机科学》 CSCD 北大核心 2015年第9期139-143,共5页 Computer Science
基金 武器装备预研重点基金资助项目(9140A15060311JB5201)资助
关键词 云计算 预测 资源部署 Holt-Winters模型 整体最优 Cloud computing, Predictive, Resource allocation, Holt-Winters model, Systems optimize
  • 相关文献

参考文献15

  • 1Ioannis A M,Helen D K.Evaluation of gang scheduling performance and cost in a cloud computing system [J].Journal of Supercomputing,2012,59(2):975-992.
  • 2Anand R,Jeffrey D U.Mining of massive datasets[M].London:Cambridge University Press,2011.
  • 3Jerri L,Joe T,Mary E T.Google Analytics,3rd Edition[M].New Jersey:Wiley,2009.
  • 4Qualcomm.The Wi-Fi evolution-an integral part of the wireless landscape[R].USA:Qualcomm Incorporated,2013.
  • 5Shiraz M,Abolfazli S,Sanaei Z,et al.A study on virtual machine deployment for application outsourcing in mobile cloud computing[J].The Journal of Supercomputing,2013,63(3):946-964.
  • 6Samer A K,Dinesh S,Prasenjit S,et al.VMFlock:Virtual Machine Co-Migration for the Cloud[C]∥Proceedings of the 20th international symposium on High performance distributed computing(HPDC’11).New York:ACM,2011:159-170.
  • 7Jonathan R C.A Distributed and Collaborative Dynamic Load Balancer for Virtual Machine[C]∥Euro-Par 2010 Parallel Processing Workshops.Berlin Heidelberg:Springer,2010:641-648.
  • 8Mankiw N G.Principles of Economics 6th Edition [M].USA:Cengage Learning,2011.
  • 9Sarah G,Roland F,Christophe C.Robust Forecasting with Exponential and Holt-Winters Smoothing[R].Belgium:Katholieke University Leuven,2007.
  • 10Hung L H.Hype Cycle for the Internet of Things[R].USA:Gartner,Inc.,2013.

二级参考文献10

  • 1Gulati A, Merchant A, Varman P. pClock: An arrival curve based approach for QoS in shared storage systems [C]/ /Proc of ACM SIGMETRICS 2007. New York: ACM, 2007: 13- 24.
  • 2Gulati A, Merchant A, Varman P. mClock: Handling throughput variability for hyper visor I/O scheduling [C]// Proc of USENIX OSDI 2010. Berkeley, CA: USENIX Association, 2010: 437-450.
  • 3Hui W, Varman P. Nested QoS: Providing flexible performance in shared I/O environment [C]/ /Proc of USENIX WIOV 2011. Berkeleyv CA, USENIX Association, 2011: 1-6.
  • 4Zhang], Anand S, Wang Q. et al. Storage performance virtualization via throughput and latency control [J]. ACM Trans on Storage, 2006, 2(3): 283-308.
  • 5Zhang Q, Zhu Q, Raouf B. Dynamic resource allocation for spot markets in cloud computing environments [C]//Proc of IEEE/ACM Int Conf on Utility and Cloud Computing 2011. Los Alamitos, CA: IEEE Computer Society, 2011: 178-185.
  • 6Zhang Q, Eren G, Raouf B. et al. Dynamic resource allocation for spot markets in clouds [C]//Proc of USE NIX HotICE 2011. Berkeley. CA: USENIX Association, 2011: 1-6.
  • 7Amazon Web Services Inc. Amazon Elastic Compute Cloud (Amazon EC2) [OL]. [2011-11-11]. http://aws. amazon. com/ec2/.
  • 8Ganger G. et al. The DiskSim simulation environment (version 4. 0) [OL]. [2011-11-11]. http://www. pdl. emu. edu/DiskSim/.
  • 9Storage Performance Council (Umass Trace Repository) [OL]. [2011-11-11].http://traces. cs, urnass. edu/index. php/Storage/.
  • 10Gulati A. Ganesha S, Irfan A, et al. Pesto , Online storage performance management in virtualized datacenters [C]// Proc of ACM SOCC 2011. New York: ACM, 2011: 1-14.

共引文献7

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部