期刊文献+

一种多目标人工蜂群算法 被引量:9

Multi-objective Artificial Bee Colony Algorithm
下载PDF
导出
摘要 为将标准人工蜂群算法有效应用到多目标优化问题中,设计了一种多目标人工蜂群算法。其进化策略在利用精英解引导搜索的同时结合正弦函数搜索操作来平衡算法对解空间的开发与开采行为。另外,算法借助了外部集合来记录与维护种群进化过程中产生的Pareto最优解。理论分析表明:针对多目标优化问题,本算法能收敛到理论最优解集合。对典型多目标测试问题的仿真实验结果表明:本算法能有效逼近理论最优,具有较好的收敛性和均匀性,并且与同类型算法相比,本算法具有良好的求解性能。 This paper designed a multi-objective artificial bee colony algorithm in order to make it effectively apply to multi-objective optimization problem. The evolutionary strategy uses elite solutions to guide search, at the same time combines sine function searching operation to balance exploration and exploitation of solution space. In addition, the al- gorithm records and maintains the Pareto optimal solutions of evolutionary process with the aid of the external archive. The theoretical analysis shows that the proposed algorithm can converge to the theory optimal solution archive of multi- objective problem. In addition, simulations result indicate that the proposed algorithm can effectively close to theory op- timal solution archive, has good convergence and uniformity in solving typical multi-objective optimization problem, and compared with the same type of algorithms in references, it has good performance.
作者 葛宇 梁静
出处 《计算机科学》 CSCD 北大核心 2015年第9期257-262,281,共7页 Computer Science
基金 四川省教育厅项目:人工蜂群算法及其在多目标优化问题中的应用研究(12ZB112)资助
关键词 多目标人工蜂群算法 精英引导搜索 正弦函数搜索 进化策略 外部集合 Multi-objective artificial bee colony algorithm, Elite guided searching, Sine function searching, Evolutionary strategy, External archive
  • 相关文献

参考文献15

  • 1Karaboga D.An idea based on honey bee swarm for numerical optimization[R].Kayseri:Erciyes University,2005.
  • 2Karaboga N,Latifoglu F.Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony-ABC-algorithm[J].Digital Signal Processing,2013,23(3):1051-1058.
  • 3Karaboga N,Latifoglu F.Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm[J].Engineering Applications of Artificial Intelligence,2013,26(2):677-684.
  • 4Yildiz A R.Optimization of cutting parameters in multi-passturning using artificial bee colony-based approach[J].Information Sciences,2013,220:399-407.
  • 5周清雷,陈明昭,张兵.多目标人工蜂群算法在服务组合优化中的应用[J].计算机应用研究,2012,29(10):3625-3628. 被引量:14
  • 6Wang L,Zhou G,Xu Y,et al.An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling[J].The International Journal of Advanced Manufacturing Technology,2012,60(9-12):1111-1123.
  • 7Yahya M,Saka M P.Construction site layout planning usingmulti-objective artificial bee colony algorithm with Levy flights[J].Automation in Construction,2014,38(5):14-29.
  • 8Zhou J,Liao X,Ouyang S,et al.Multi-objective artificial bee co-lony algorithm for short-term scheduling of hydrothermal system[J].International Journal of Electrical Power & Energy Systems,2014,55(2):542-553.
  • 9向万里,马寿峰,安美清.具有Pbest引导机制的适应性多策略差分进化算法[J].模式识别与人工智能,2013,26(8):711-721. 被引量:11
  • 10刘全,王晓燕,傅启明,张永刚,章晓芳.双精英协同进化遗传算法[J].软件学报,2012,23(4):765-775. 被引量:86

二级参考文献90

  • 1孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 2李庆华,杨世达,阮幼林.基于水平集的遗传算法优化的改进[J].计算机研究与发展,2006,43(9):1624-1629. 被引量:12
  • 3ZENG Liang-zhao, BENATALLAH B, DUMAS M, et al. QoS-aware middle-ware for Web ,servi<;es composition [ J]. IEEE Trans on Software Engineering ,2004 ,30(5) :311-327.
  • 4CANFORA G, PENTA M D, ESPOSITO R, et al. An approach for QoS-aware service composition based on genetic algorithms [ C]/ /Proc of Conference on Genetic and Evolutionary Computation. New York: ACM Press,2005:1069-1075.
  • 5LIU Huan, ZHONG Fa-rong , OUY ANG Bang, et al. An approach for QoS-aware Web service composition based on improved genetic algorithm [ C ]/ /Proc of International Conference on Web Information Systems and Mining. Washington DC: IEEE Computer Society, 20 1 0 : 123-128.
  • 6REN Kai-jun , XIAO Nong, SONG Jun-qiang , et at. Gradual removal of QoS constraint violations by employing recursive bargaining strategy for optimizing service composition execution path [ C ]/ /Proc of IEEE International Conference on Web Services. Washington DC: IEEE Computer Society, 2009: 485-492.
  • 7ZHANG Wei, CHANG C K, FENG Tai-ming , et al. QoS-based dynamic Web service composition with ant colony optimization [ C ]/ / Proc of the 34th Annual Computer Software and Applications Conference. Washington DC: IEEE Computer Society, 2010: 493-502.
  • 8KOUSALYA G, PALANIKKUMAR D, PIRIYANKAA P R. Optimal Web service selection and composition using multi -objective bees algorithm [ C ]/ /Proc of the 9th International Symposium on Parallel and Distributed Processing with Applications Workshop. Washington DC: IEEE Computer Society, 2011 :193-196.
  • 9DONG Shuan-yu , DONG Wei-qing. A QoS driven Web service composition method based on ESGA with an improved initial population selection strategy [ J]. International Journal of Distributed Sensor Networks ,2009 ,5 (1 ) : 54-54.
  • 10KARABOGA D, BASTURK B. On the performance of artificial bee colony ( ABC) algorithm [J]. Applied Soft Computing, 2008 ,8 (1 ) : 687-697.

共引文献149

同被引文献43

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部