期刊文献+

广义洛伦兹内核函数在模糊C均值聚类中的应用研究

Research on Generalized Lorenz Kernel Function in Fuzzy C Means Clustering
下载PDF
导出
摘要 模糊C均值(FCM)算法是数据聚类分析的主要算法。但在嘈杂环境下,对于抽样大小不一的聚类,数目越多准确性越低,上述弊端可通过替代性FCM(AFCM)的高斯内核映射来解决。鉴于AFCM的不足,提出了针对模糊C均值聚类的广义洛伦兹内核函数。利用该算法对鸢尾数据库进行聚类,将其划分成山鸢尾、变色鸢尾和维吉尼亚鸢尾3类。实验结果表明,广义洛伦兹模糊C均值(GLFCM)可实现对离群聚类和大小不等的聚类数据的分类,其结果优于K均值、FCM、替代性C均值(AFCM)、Gustafson-Kessel(GK)和Gath-Geva(GG)方法,收敛迭代次数比AFCM的更少,其分区索引(SC)效果也好于其他方法。 Fuzzy C means(FCM) algorithm is the main algorithm for data clustering analysis. But in a noisy environ- ment, for the clusters of different sampling sizes, accuracy is low when the number of clusters is large. The above disad- vantages can be sloved through the Gauss kernel mapping of alternative FCM(AFCM). This paper proposed generalized Lorenz kernel function to the fuzzy C means clustering for the deficiency of AFCM. This algorithm was used to analyze the Iris database cluster, to classify the Iris database into three clusters of Iris setosa, Iris versicolour and Iris virginica. Experimental results show that the generalized lorentzian fuzzy C-means(GLFCM) can classify data of outliers and un- equal sized clusters. The GLFCM yields better cluster than K-means(KM), FCM, alternative fuzzy C-means(AFCM), Gustafson-Kessel(GK) and Gath-Geva(GG). It takes less iteration than that of AFCM to converge. Its partition index (SC) is better than the others.
出处 《计算机科学》 CSCD 北大核心 2015年第9期268-271,共4页 Computer Science
基金 黑龙江省智能教育与信息工程重点实验室开放基金项目(1155xnc107) 黑龙江省教育厅科学技术研究项目(12543067)资助
关键词 广义洛伦兹隶属函数 K均值 替代性模糊C均值 聚类 离群聚类 Generalized lorentzian membership function, K-means, Alternative fuzzy C-means, Clustering, Outlier clustering
  • 相关文献

参考文献10

  • 1Kaufman L,Rousseeuw P.Finding Groups in Data[M].Wiley Series in Probability and Statistic,2005:56-67.
  • 2Mirkin B.Clustering for Data Mining:A Data Recovery Approach[M].Chapman and Hall,2005:12-24.
  • 3Wang Xiang,Guo Rui,et al.A Novel Alternative WeightedFuzzy C-means Algorithm and Cluster Validity Analysis [C]∥IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.2008:130-134.
  • 4Hammerly G,Elkan C.Alternatives to the k-mean algorithm that find better clusterings[C]∥Proceedings of the 11th InternationalConference on Information and Knowledge Management,2002:600-607.
  • 5郭小芳,李锋,宋晓宁,王卫东.基于连续域混合蚁群优化的核模糊C-均值聚类算法研究[J].模式识别与人工智能,2014,27(9):841-846. 被引量:5
  • 6李广原,杨炳儒,刘英华,曹丹阳.基于模糊论的数据挖掘研究综述[J].计算机工程与设计,2011,32(12):4064-4067. 被引量:7
  • 7李丽丽,李明,刘希玉.基于粒子群模糊C-均值聚类的图像分割算法[J].计算机工程与应用,2009,45(31):158-160. 被引量:12
  • 8Liu X,Yang C.Performance research of Gaussian functionweighted fuzzy C-means algorithm[C]∥Proceedings of SPIE.2007.
  • 9Yang M S,Tsai H S.A Gaussian kernel-based fuzzy c-means algotihm with a spatial bias correction[J].Pattern Recognition Letters,2008,29(12):1713-1725.
  • 10Ramathilagam S,Huang Yueh-min.Extended Gaussian kernelversion of fuzzy c-means in the problem of data analyzing[J].Expert Systems with Applications:An International Journal,2011,38(4):3793-3805.

二级参考文献27

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部